

Cockburn and Calrossie Combined Sewer Relief Works C5 –Taylor Ave Trunk Sewer Geotechnical Data Report

Final

KGS Group 11-0107-18 November 2017

Prepared By

Jacqueline MacLennan, B.Sc. E.I.T. Geotechnical Engineer-in-Training

Seotechnical Engineer-in-Trainii

Approved By

Dami Adedapo, Ph.D., P.Eng. Manager, Geotechnical Engineering Service

PROFESSION

KGS Group Winnipeg, Manitoba

TABLE OF CONTENTS

		<u>P</u>	PAGE
1.0	INTRO 1.1 1.2 1.3	DDUCTIONGENERALPURPOSE OF REPORTREPORT LIMITATIONS.	1 1
2.0	BACK 2.1 2.2 2.3	GROUND INFORMATION OTHER GEOTECHNICAL INVESTIGATIONS NEAR THE SITEREGIONAL GEOLOGIC SETTINGLOCAL GEOLOGY	3 4 4
3.0	SCOP 3.1 3.2 3.3	PE OF THE 2017 INVESTIGATION PROGRAM GENERAL TEST HOLE DRILLING AND SOIL SAMPLING GROUNDWATER MONITORING	7 7
4.0	LABO	RATORY TESTING	9
5.0	REFE	RENCES	10
6.0	STATE 6.1 6.2	EMENT OF LIMITATIONS THIRD PARTY USE OF REPORT GEOTECHNICAL INVESTIGATION STATEMENT OF LIMITATION	11
TABLE	ES		

FIGURES APPENDICES

P:\Projects\2011\11-0107-18\Doc.Control\lssued\SOURCE\Docs\GDR - Final\RPT_GDR.docx

LIST OF TABLES

- 1. Summary of Test Hole Locations
- 2. Typical Groundwater Measurements
- 3. Summary of 2017 Laboratory Testing

LIST OF FIGURES

1. Geotechnical Drilling Locations

LIST OF APPENDICES

- A. 2016 Test Hole Logs
- B. 2017 Test Hole Logs
- C. Photos
- D. Geotechnical Investigation Laboratory Data

1.0 INTRODUCTION

1.1 GENERAL

KGS Group was retained by the City of Winnipeg Water and Waste Department to perform geotechnical investigations to facilitate the design and construction of the proposed Land Drainage System (LDS) trunk sewer pipe along Taylor Ave. from Wentworth to Nathaniel Street. The proposed LDS pipe project is part of the Cockburn/Calrossie Combined Sewer Relief Works currently being undertaken by the City of Winnipeg.

It is our understanding the LDS trunk sewer will consist of 1800, 2100 and 2400 mm pipe from Wentworth Street to Nathaniel Street. The LDS sewer will drain to the 2700 mm LDS sewer installed along Wilton Street. It is further understood that open-face rotary wheel Tunnel Boring Machine (TBM) tunnelling will be employed for the installation of the proposed pipe.

The purpose of our investigation was to identify the subsurface soil and groundwater conditions along the route of the proposed works. This factual report contains a description of the geotechnical investigations program performed by KGS Group and our findings.

1.2 PURPOSE OF REPORT

This report summarizes the geotechnical conditions observed along the alignment on Taylor Ave. from Wentworth St. to Nathaniel St. and provides geotechnical considerations that would form part of the basis of the design for the Work. This report includes geotechnical data collected at the project site and summary of encountered subsurface conditions along the alignment.

1.3 REPORT LIMITATIONS

This report has been prepared for the exclusive use of the City of Winnipeg for the specific application to the proposed Contract 5 of the Cockburn/Calrossie Combined Sewer Relief Works project. It has been prepared in accordance with generally accepted geotechnical engineering practice. No other warranty, express or implied, is made.

The geotechnical data presented in this report are based on the observations and test results obtained from field investigation programs completed between 2016 and 2017. The information provided indicate soil conditions and water levels only at specific locations and times, and only to the depths penetrated. Subsurface conditions and water levels at other locations may differ from conditions occurring at these explored locations. Also, the passage of time may result in a change in conditions at these locations. KGS Group is not responsible for any claims, damages, or liability associated with interpretation of subsurface data or for reuse of subsurface data, without KGS Group's express written authorization.

2.0 BACKGROUND INFORMATION

2.1 OTHER GEOTECHNICAL INVESTIGATIONS NEAR THE SITE

KGS Group completed a geotechnical investigation for Contract 4 along the Wilton St. alignment from Taylor Ave to the proposed Parker Storm Retention Basin (SBR). The 2016 investigation consisted of drilling nine (9) test holes to investigate the subsurface stratigraphic conditions. Ten (10) pneumatic piezometers were installed in the clay, silt till and bedrock to monitor the groundwater levels.

The stratigraphy observed during the 2016 site investigation generally consisted of a layer of fill over an extensive layer of high plasticity clay and silt till. Silt layers were encountered within the upper Complex Zone. The top of the silt till was encountered at elevations ranging from 219 to 220.8 m±. The borehole logs from the 2016 geotechnical investigation have been included in Appendix A.

2.2 REGIONAL GEOLOGIC SETTING

Winnipeg geology consisted of carbonate sedimentary bedrock overlaying Precambrian era granite and gneiss. The sedimentary rock consists of limestone, dolomite and shale to a lesser extent. Local geological maps indicate karst topography caused from dissolution of the soluble rock, and a heavily fractured upper bedrock layer. The karst topography is typically infilled with mixtures of silt, sand and gravel till material.

During the last glacial advance and retreat, Winnipeg's glacial till was laid down by ice masses. Glaciolacustrine deposits suspended in glacial lakes confined by ice masses settled to overlie the tills. Additional information on the regional geology can be found in Geological Engineering Report for Urban Development of Winnipeg, University of Manitoba (Reference 1).

2.3 LOCAL GEOLOGY

Summary of the geology across the site as determined from the field investigation program completed in 2017 are provided herein, while the detailed stratigraphic sequence of subsurface material encountered at the site and key engineering considerations are presented in Section 3 of this report.

2.3.1 Overburden

The overburden deposits encountered at the project site generally consist of extensive deposit of high plastic clay overlying silt till deposit. Variable layers of fill and silt were observed in the test holes within the upper complex zone.

Upper Complex Zone

The Complex Zone consists of stratified clays, and silts with variable amounts of organics, granular and fill material. This zone has high soil variability. The base of the Complex Zone is typically defined by the base of the silt layer. The silt interlayers in the Complex Zones can vary from 100 mm to up to 3 m in thickness and are typically approximately 1 m. Typically the silt is tan in colour, soft in consistency, of no to low plasticity and may have a perched groundwater table. The moisture content of the silt ranges from 20 to 35% and the unit weight is within the range of 18.8 to 20.4 kN/m³ (Ref 1).

Glaciolacustrine Clay

Underlying the upper Complex Zone is typically 9 to 12 m of glaciolacustrine clay deposit. In decreasing occurrence, typically the predominant mineral composition of the lacustrine clay generally consists of montmorillonite (a member of the smectite family), illite, kaolinite and some mica (Graham and Shields 1985). The clay deposits changes from brown to grey (sometimes referred to as blue clay) at depths of approximately 4.6 to 7.6 m. Within this depth range, the brown and grey clays often appear mottled, making it sometimes difficult to observe a discrete contact between the two colours. It is believed the colour change is due to the oxidation of the brown clay (Graham and Shields 1985).

The brown clay is typically stiff in consistency and of a high plasticity. The brown clay is highly fissured with the frequency of fissures decreasing with depth. White gypsum pockets and veins are typically observed within the brown clay, often filling in the fissures. The lower grey clay is firm to stiff in consistency and of intermediate to high plasticity. Fine to coarse grained gravel and boulders are found occasionally in the grey clay, near the till interface.

Typical moisture content in the clay ranges from 40 to 60%. Atterberg Limit tests within the brown and grey clay has shown the brown clay is typically more plastic than the underlying grey clay. Liquid Limits in the brown clay typically range from 80 to 110% and the Plastic Index from 60 to 80%. Liquid Limits in the grey clay typically range from 65 to 95% and the Plastic Index ranges from 40 to 65%. Unconfined compressive strengths usually range from 70 to 100 kPa within the brown clay. Measured values within the upper brown clay are variable due to fissures. Typically the unconfined compressive strengths generally yield a lower bound to undrained shear strengths (Ref 1).

Undrained shear strengths measured from unconfined compression tests are generally higher within the upper clay zone (~ top 2 to 3 m), typically in the order of 70 to 100 kPa. Below a depth of about 4 to 5 metres, strengths typically decrease approximately uniformly with increasing depth. As the underlying till layer is approached, strengths are typically in the order of 40 kPa but may be as low as 25 kPa. The higher undrained shear strengths with the upper brown clay and lower shear strengths at depth near the till is caused by weathering near the ground surface and decreasing over consolidation ratios to approximately normally consolidated conditions near the bottom of the deposit. They may also reflect artesian ground water conditions (and therefore low vertical effective stresses).

Effective shear strength parameters of the brown and grey clay obtained from consolidated undrained compression triaxial strength testing of a large number of relatively undisturbed samples yielded intact peak strength of c' = 19.6 kPa and $\phi' = 20.5^{\circ}$ and c' = 29.8 kPa and $\phi' = 15.8^{\circ}$, respectively. While the effective large strain shear strength parameter for the brown and grey clay were c' = 14.5 kPa and $\phi' = 13.3^{\circ}$ and c' = 7.7 kPa and $\phi' = 15.7^{\circ}$, respectively (Ref 2). The effective shear strength parameters typically used by local geotechnical engineers in Winnipeg for slope stability analysis are c' = 5 kPa and $\phi' = 14^{\circ}$ for both clays.

The laboratory test results from the 2017 geotechnical investigation typically fall within these bounds.

Till Deposits

The glaciolacustrine clays are underlain by silty tills. The till is typically 0.6 to 2.6 m thick around the project site and may include a transition zone of till lenses in clay and clay inclusions in the till. The composition of the till is variable. The till is of varying consistency with the dense to very dense portions of the deposits being a basal till (hardpan). The upper horizon of the till deposit may be frequently loose and considerably softer, and water bearing likely an ablation till (putty till). The upper ablation till typically may have water contents ranging from 10 - 15% while the denser basal till will typically have water contents in the range of 7 - 10%. The upper tills contain more clay, and have a slightly higher plasticity than the lower tills with high silt contain. Unconfined compressive strengths ranging from 3.4 - 3.6 MPa have been reported for very dense tills with a moisture content of about 5% (Ref 1). Young's moduli typically range from 170 to 240 MPa (Ref 1). The tills are highly variable in terms of thickness, density and boulder content. Pockets of non-combustible gas, often under pressure are occasionally encountered in the till layer (Ref 1).

2.3.2 Bedrock

Bedrock was cored in five (5) test holes at the site, the bedrock was encountered at elevations ranging from 216.6 to 219 m. The majority of the bedrock observed at the site was dolomite. The upper portion of the bedrock within some test holes was damaged by the drill action when coring. The dolomite was tan to light brown in colour, fine grained, poor quality with increased Rock Quality Designation (RQD) with depth. Interbedded shale and dolomite was encountered in test hole TH17-06 at an elevation of 216.5 m and a thin shale layer was encountered in test hole TH17-15 at elevation 215.5 m. Limestone and dolomitic limestone was encountered in test holes TH17-01 and TH17-06 respectively overlaying the dolomite. The limestone was light brown to yellow in color, poor quality, fractured, and with vugs.

3.0 SCOPE OF THE 2017 INVESTIGATION PROGRAM

3.1 GENERAL

This section provides a summary of the 2017 field investigation program, and laboratory test results; as well as the subsurface conditions encountered at the project site.

The 2017 geotechnical investigation was completed to determine the subsurface conditions at the proposed trunk sewer alignment. The results of the investigation program are presented in this Geotechnical Data Report.

3.2 TEST HOLE DRILLING AND SOIL SAMPLING

The test hole drilling and sampling programs were completed by KGS Group from April 24 to May 4, 2017 and October 5, 2017. Test holes TH17-01 to TH17-15 and TH17-17 were drilled on the west bound curb lane. Test hole TH17-16 was drilled in the park space northwest of the Taylor Ave. and Nathaniel St. intersection. The locations of the test holes are shown in Figure 1 and a summary of the locations is presented in Table 1.

The program consisted of drilling seventeen (17) deep test holes to investigate the subsurface stratigraphic conditions. The information obtained from the site investigations will be used to facilitate the design and construction of the various components of the storm sewer line project including the excavation of the launch and reception shafts.

Maple Leaf Drilling Enterprises of Winnipeg, Manitoba and Paddock Drilling, of Brandon, Manitoba provided the drilling services using track and truck mounted drill rigs equipped with 125 mm solid stem augers, casing advancer and NQ coring. The drilling was completed under the supervision and direction of KGS Group personnel. Soil samples were collected directly off the auger flights typically at 1.5 m (5 ft.) intervals or at changes in soil strata encountered during drilling. The soil samples were visually inspected for material type and classified according to the Modified Unified Soil Classification System (USCS).

Standard Penetration Tests were completed in the glacial till material to evaluate the in-situ density. Clay samples were tested with a field Torvane to evaluate consistency and estimate undrained shear strengths. Upon completion of drilling, the test holes were examined for indications of sloughing and seepage, and then backfilled. Detailed test hole log records incorporating all field observations, field test results, and laboratory test results are provided in the test hole log records in Appendix B, and photographs from the drilling are included in Appendix C.

3.3 GROUNDWATER MONITORING

A total of six (6) vibrating wire piezometers, and nine (9) standpipe piezometers were installed in 2017 and two (2) pneumatic piezometers were installed in 2016 along the Contract 5 alignment, test hole TH16-09. Six (6) vibrating wire piezometers and one (1) pneumatic piezometer were installed in the clay, five (5) standpipe piezometers were installed in the silt till and four (4) standpipe piezometers and one (1) pneumatic piezometer were installed in the bedrock. Table 2 summarizes the installation details and the piezometeric monitoring completed to data for the 2016 and 2017 piezometers. The installation details of the piezometers are shown on the borehole log records provided in Appendix A and B.

4.0 LABORATORY TESTING

A diagnostic laboratory testing program was performed on representative soil samples to determine the relevant engineering properties of the subsurface soils relative to the trenchless construction method. Diagnostic testing completed included moisture content analyses, Atterberg Limit tests, grain size analysis, unconfined compressive strength testing and XRD analysis. All laboratory testing was completed at a local laboratory accredited by Standards Council of Canada and testing was performed in accordance with ASTM standards.

Laboratory test results from the 2017 field program are summarized on Table 3. The laboratory testing for the 2016 and 2017 investigations are included in Appendix D.

5.0 REFERENCES

- 1. Department of Geological Engineering, the University of Manitoba, (1983). Geological Engineering Report for Urban Development of Winnipeg.
- 2. KGS Group, Acres Engineering, UMA Engineering (2004). Appendix B, Floodway Channel Pre-Design, Floodway Expansion Project, Project Definition and Environmental Assessment, Preliminary Engineering Report.

6.0 STATEMENT OF LIMITATIONS

6.1 THIRD PARTY USE OF REPORT

This report has been prepared for the City of Winnipeg and designers and bidders for the Cockburn and Calrossie Combined Sewer Relief Works project to whom this report has been addressed and any use a third party makes of this report, or any reliance on or decisions made based on it, are the responsibility of such third parties. KGS Group accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions undertaken based on this report.

6.2 GEOTECHNICAL INVESTIGATION STATEMENT OF LIMITATION

The geotechnical investigation findings and recommendations of this report were prepared in accordance with generally accepted professional engineering principles and practice. The findings and recommendations are based on the results of field and laboratory investigations, combined with an interpolation of soil and groundwater conditions found at and within the depth of the test holes drilled by KGS Group at this site. If conditions encountered during construction appear to be different from those shown by the test holes drilled by KGS Group or if the assumptions stated herein are not in keeping with the design, this office should be notified in order that the recommendations can be reviewed and modified if necessary.

November 2017 KGS 11-0107-18

TABLES

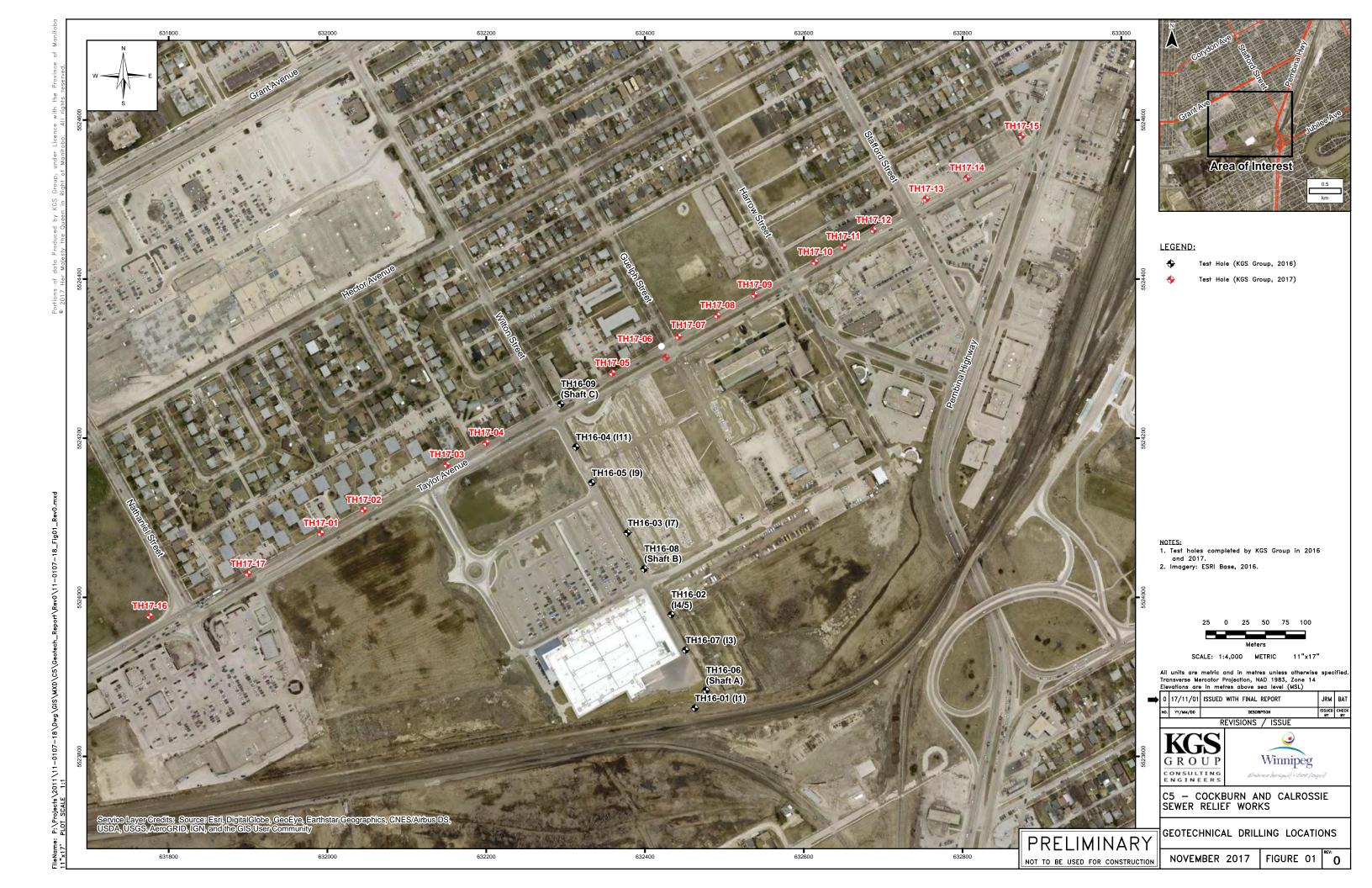
November 2017 KGS 11-0107-18

TABLE 1
SUMMARY OF TESTHOLE LOCATIONS

Test hole ID	Location	Northing (m)	Easting (m)	Approx. Ground Surface Elevation (m)	Approx. Borehole Depth (m)
TH16-09	Taylor Ave. Boulevard East of Wilton	5,524,243	632,294	232.73	15.04
TH17-01	Approximately 320 m west of Wilton St.	5,524,081	631,992	232.19	16.46
TH17-02	Approximately 265 m west of Wilton St.	5,524,110	632,046	232.13	12.80
TH17-03	Approximately 140 m west of Wilton St.	5,524,167	632,150	232.32	12.80
TH17-04	Approxiamtely 90 m west of Wilton St.	5,524,195	632,200	232.58	13.72
TH17-05	Approxiamtely 80 m west of Guelph St.	5,524,282	632,359	232.36	12.65
TH17-06	West of Guelph St.	5,524,316	632,420	232.14	16.76
TH17-07	East of Guelph St.	5,524,328	632,442	232.18	13.11
TH17-08	Approximately 70 m east of Guelph St.	5,524,354	632,491	231.86	13.11
TH17-09	West of Harrow St.	5,524,380	632,538	232.12	13.87
TH17-10	East of Harrow St.	5,524,422	632,614	231.76	18.14
TH17-11	Approximately 80 m east of Harrow St.	5,524,441	632,650	231.84	14.02
TH17-12	West of Stafford St.	5,524,462	632,688	231.98	15.70
TH17-13	East of Stafford St.	5,524,501	632,754	232.10	15.32
TH17-14	Approximately 85 m east of Stafford St.	5,524,528	632,806	232.09	14.94
TH17-15	Wentworth St.	5,524,580	632,875	231.79	17.98
TH17-16	Approximately 40 m west of Nathaniel St.	5,523,977	631,776	232.14	15.86
TH17-17	Approximately 90 m East of Nathaniel St.	5,524,030	631,900	232.27	13.73

TABLE 2 GROUNDWATER MEASUREMENTS

Test Hole:	TH1	16-09	TH17	'-01	TH17	'-06	TH17-07		TH17-10		TH17-12		TH17-12		TH17-12		TH17-13	TH17	'-15	TH	16-16
Ground Elevation (m):	23	2.73	232.19	232.19	232.14	232.14	232.18	231.76	231.76	231.76	231.98	231.98	232.10	231.79	231.79	232.14	232.14				
Piezometer No.:	36897	36889	VW 1700051	Standpipe	VW 1700053	Standpipe	Standpipe	VW 1700050	Standpipe	Standpipe	VW 1700049	Standpipe	Standpipe	VW 1700048	Standpipe	VW 1702738	Standpipe				
Tip Elevation (m):	224.2	218.1	225.48	219.39	226.04	215.38	219.07	224.14	218.50	213.62	226.49	216.28	217.47	224.17	213.81	223.90	216.98				
Monitoring Zone:	Clay	Bedrock	Clay	Silt Till	Clay	Bedrock	Silt Till	Clay	Silt Till	Bedrock	Clay	Bedrock	Silt Till	Clay	Bedrock	Clay	Silt Till				
Date		Piezometric Elevation (m)																			
25-May-16	226.42	225.72																			
17-Jun-16	226.42	225.65																			
26-Aug-16	224.32	224.86																			
6-Oct-16	225.62	225.36																			
9-May-17	227.42	227.22	230.92	228.06	230.27	226.66	226.64	230.31	225.19	226.57	228.78	226.43	226.48	231.37	228.12						
14-Jun-2017	227.42	225.79	230.81	225.99	229.98	225.52	225.56	229.99	225.66	225.46	228.65	225.21	225.87	230.92	225.67						
25-Sep-2017	227.40	225.29	230.85	225.38	229.98	224.64	224.63	229.73	225.14	224.65	228.96	224.52	227.75	230.86	225.21						
16-Oct-2017																226.79	225.22				


It should be noted that groundwater levels will fluctuate seasonally and following precipitation events.

November 2017 KGS 11-0107-18

FIGURES

APPENDIX A 2016 TEST HOLE LOGS

KGS GROUP

SOIL DESCRIPTION CRITERIA

PRINCIPAL AND MINOR SOIL COMPONENTS

And 35 – 50% With 20 – 35% Some 10 – 20% Trace 0 – 10%

Occasional Trace of very local concentration

FIELD MOISTURE CONTENT

Dry No moisture visible or to touch when fresh exposure is examined

Damp Slightly wet to touch Moist Fresh exposure wet to touch

Wet A film of water is readily visible around particles of granular soils, cohesive soils can readily be smeared or remolded; water can be squeezed

out

Saturated Water can easily be squeezed out

Free Water Water completely separated from the soil particles

DEPOSITIONAL STRUCTURE

Massive Structureless soil

Stratified (Layered) Different soils or visible variations in soil constituents arranged in layers, generally but not necessarily parallel to one another,

and not necessarily in horizontal position, at least 6 mm thick

Varved Glaciolacustrine deposits with annual pairs of fine and coarser laminae (thin laminae of alternately deposited inorganic silt and

clay)

Laminated Closely spaced, regularly alternating layers of differing soils and/or colours, or shades of similar gradation, relatively consistent in

thickness and consisting of sand, silt, or clay

Lens Inclusions of a different soil within surrounding soils, which thins out horizontally and may not be continuous over any

significant distance

Pocket A different soil type of very limited thickness or lateral extent (a small lens)

Inclusions Small pockets

Nuggety A different soil type in the form of small lumps Parting Paper thin separation of one type by another

POST DEPOSITIONAL STRUCTURE

Fissured A soil breaks along definite, pre-existing planes or fracture with little resistance to fracturing

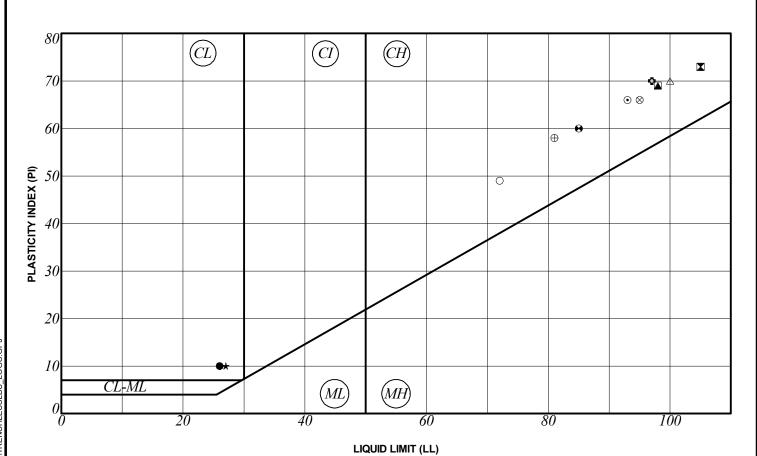
Slickensided Polished or glossy, sometimes striated surfaces resulting from movement of a material block relative to the adjacent blocks Blocky/Friable/Platy Cohesive soil that can be broken down into angular larger fragments (blocky), small fragments (friable), or thin plate-like

fragments (platy) which resist further breakdown

Cemented Soil particles or fragments held together by cemented materials, often chemical precipitants, or deposits within overall soil mass

GRAIN SIZE DISTRIBUTION IN COARSE GRAINED SOIL

 $\begin{array}{lll} \mbox{Boulders} & >& 200 \mbox{ mm } \mbox{ \emptyset} \\ \mbox{Cobbles} & 75-200 \mbox{ mm } \mbox{ \emptyset} \\ \mbox{Coarse Grained Gravel} & 19-75 \mbox{ mm } \mbox{ \emptyset} \\ \mbox{Fine Grained Gravel} & 4.75-19 \mbox{ mm } \mbox{ \emptyset} \\ \mbox{Coarse Grained Sand} & 2-4.75 \mbox{ mm } \mbox{ \emptyset} \\ \mbox{Medium Grained Sand} & 0.425-2 \mbox{ mm } \mbox{ \emptyset} \\ \mbox{Fine Grained Sand} & 0.075-0.425 \mbox{ mm } \mbox{ \emptyset} \\ \end{array}$


DENSITY OF GRANULAR SOIL

Description	Standard Penetration Test	Relative Density
Very Loose	0-4 Blows Per 0.3 m	<15%
Loose	4-10 Blows Per 0.3 m	15 - 35%
Compact	10 - 30 Blows Per 0.3 m	35 - 65%
Dense	30 - 50 Blows Per 0.3 m	65 - 85%
Very Dense	>50 Blows Per 0.3 m	>85%

CONSISITENCY OF COHESIVE SOILS

Description	Torvane	Standard Penetration Test
Very Soft	<12 kPa	<2
Soft	12 – 25 kPa	2 - 4
Firm	25 - 50 kPa	4 - 8
Stiff	50 – 100 kPa	8 - 15
Very Stiff	100 – 200 kPa	15 - 30
Hard	>200 kPa	>30

SYMBOL	HOLE	DEPTH (n	n) SAMPLE#	LL	PL	PΙ	% SAND	% SILT	% CLAY	% MC	CLASSIFICATION
•	TH16-02 (I4/5)		S3	26	16	10				22.9	CL
	TH16-02 (I4/5)	5.6	S5	105	32	73				56.3	CH
A	TH16-03 (I7)	5.3	S5	98	29	69				53.4	CH
*	TH16-05 (I9)	2.0	S2	27	17	10				25.0	CL
•	TH16-05 (I9)	5.6	S4	93	27	66				53.1	CH
O	TH16-06 (Shaft A	A) 6.1	S7	97	27	70	0.5	19.4	80.1	51.8	CH
Ο .	TH16-06 (Shaft A	A) 9.1	S10	72	23	49				51.5	CH
Δ.	TH16-08 (Shaft E	3) 5.3	S7	100	30	70				57.5	CH
\otimes .	TH16-08 (Shaft E	3) 6.1	S8	95	29	66	0.4	18.2	81.4	52.9	CH
Φ .	TH16-08 (Shaft E	3) 9.1	S11	81	23	58				58.1	CH
	TH16-09 (Shaft 0	C) 6.1	S6	98	29	69	0.9	18.2	80.9	57.4	CH
Θ.	TH16-09 (Shaft 0	C) 9.1	S9	85	25	60				46.5	CH

Notes:

ML - Low Plasticity Silt MH - High Plasticity Silt
CL-ML - Silty Clay
CL - Low Plasticity Clay
CI - Intermediate Plasticity Clay

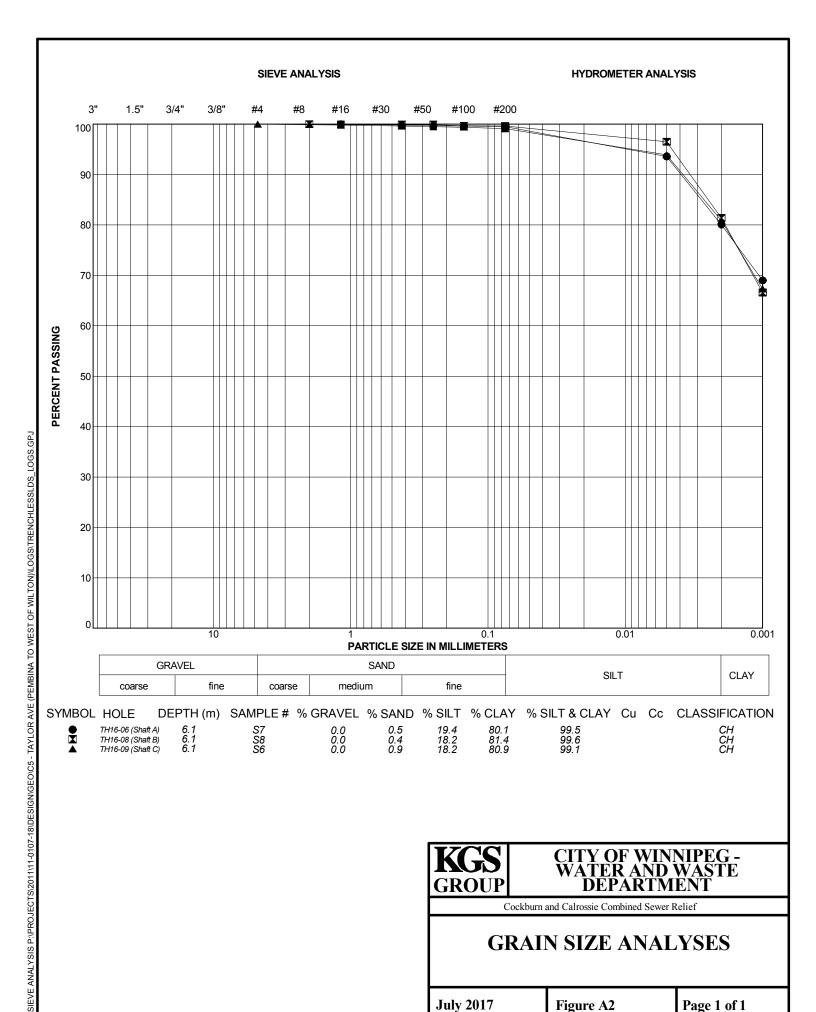
CH - High Plasticity Clay

LL - Liquid Limit

PL - Plastic Limit

PI - Plasticity Index MC - Moisture Content

NP - Non-Plastic

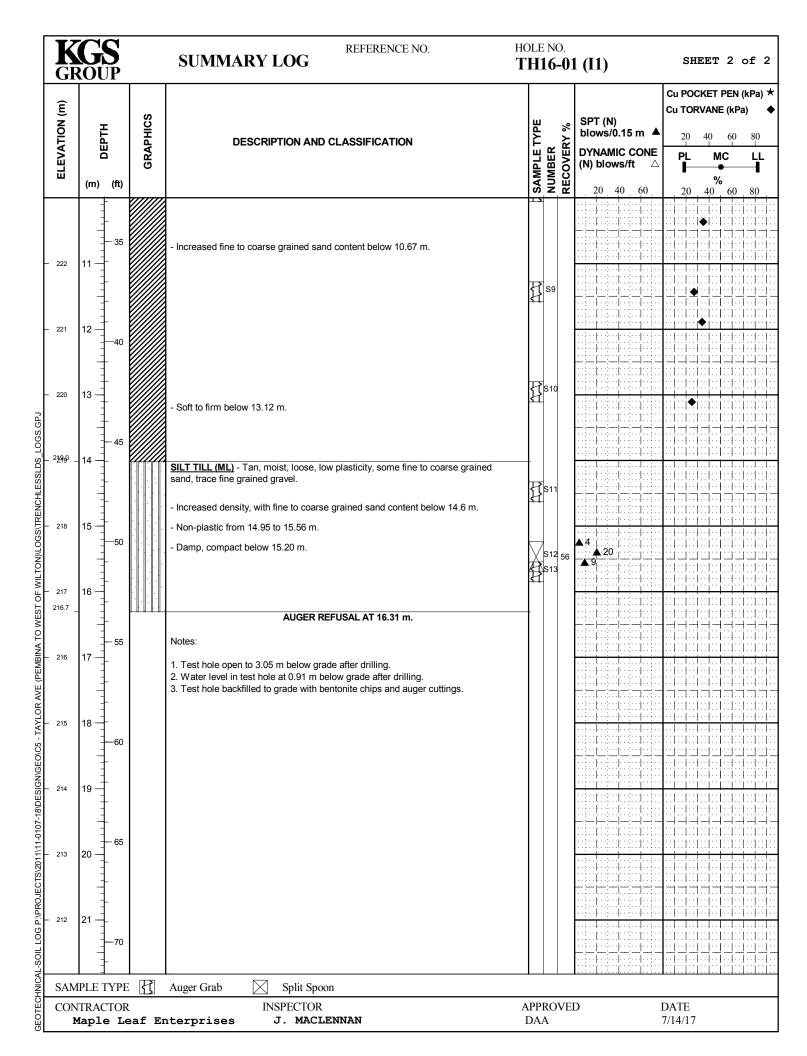


CITY OF WINNIPEG -WATER AND WASTE DEPARTMENT

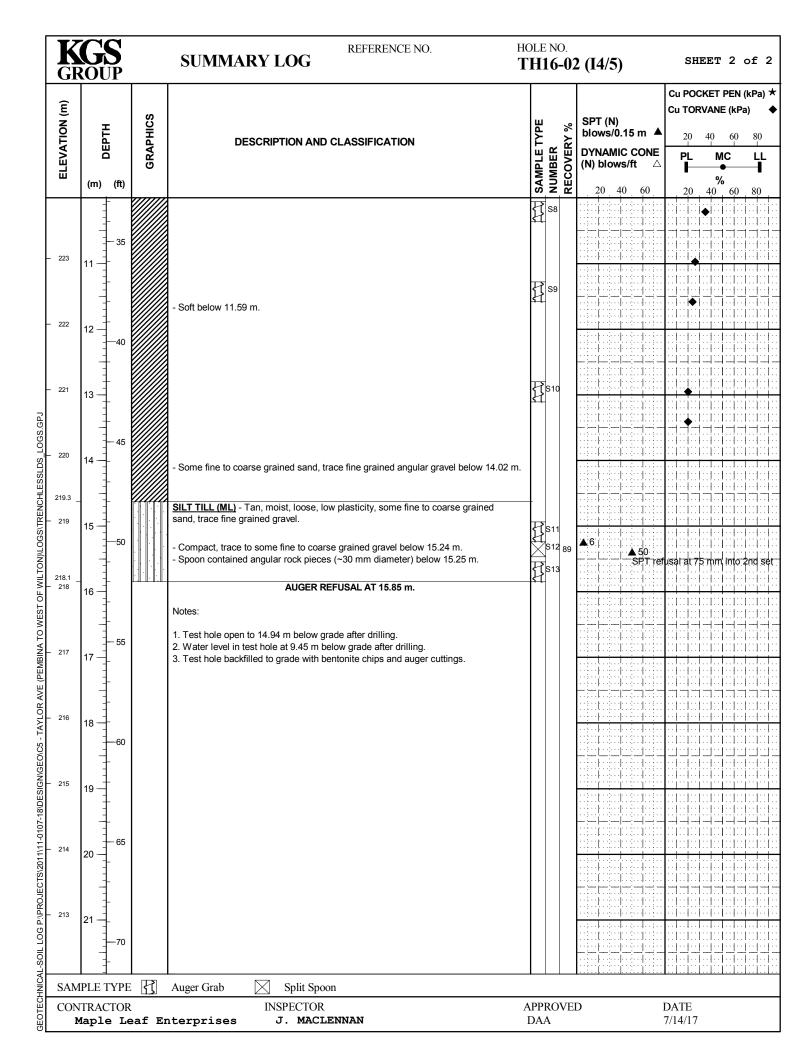
Cockburn and Calrossie Combined Sewer Relief

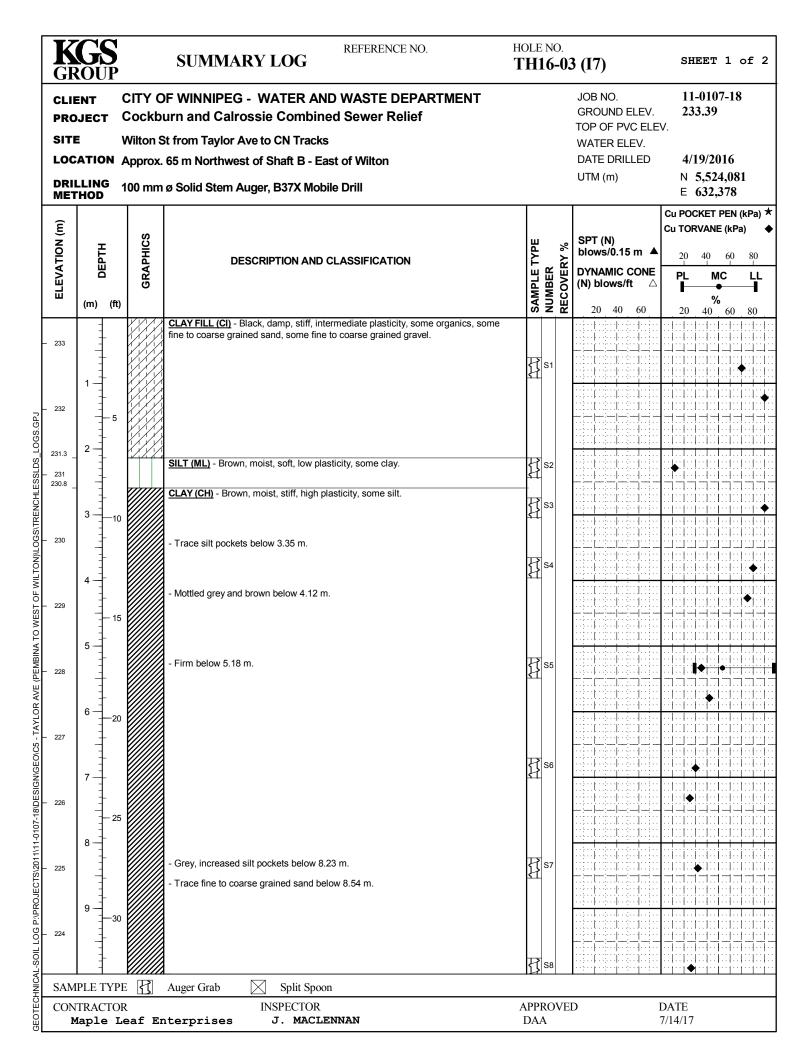
A-LINE PLOT

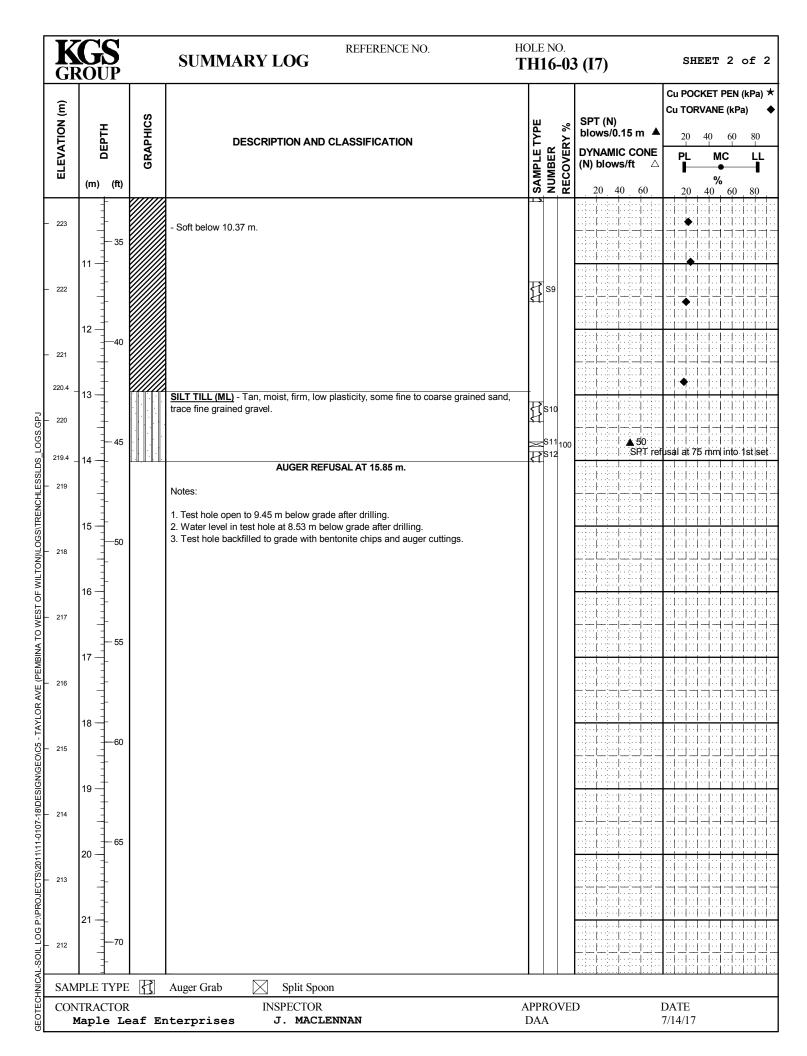
July 2017 Figure A1 Page 1 of 1

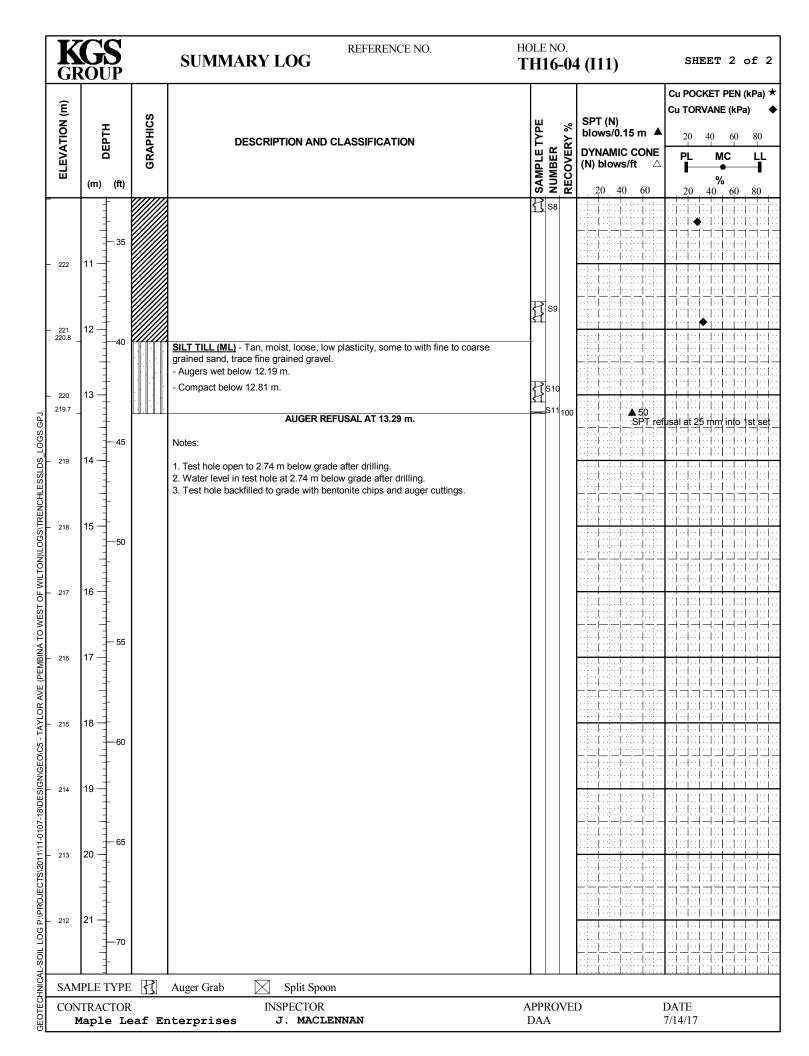


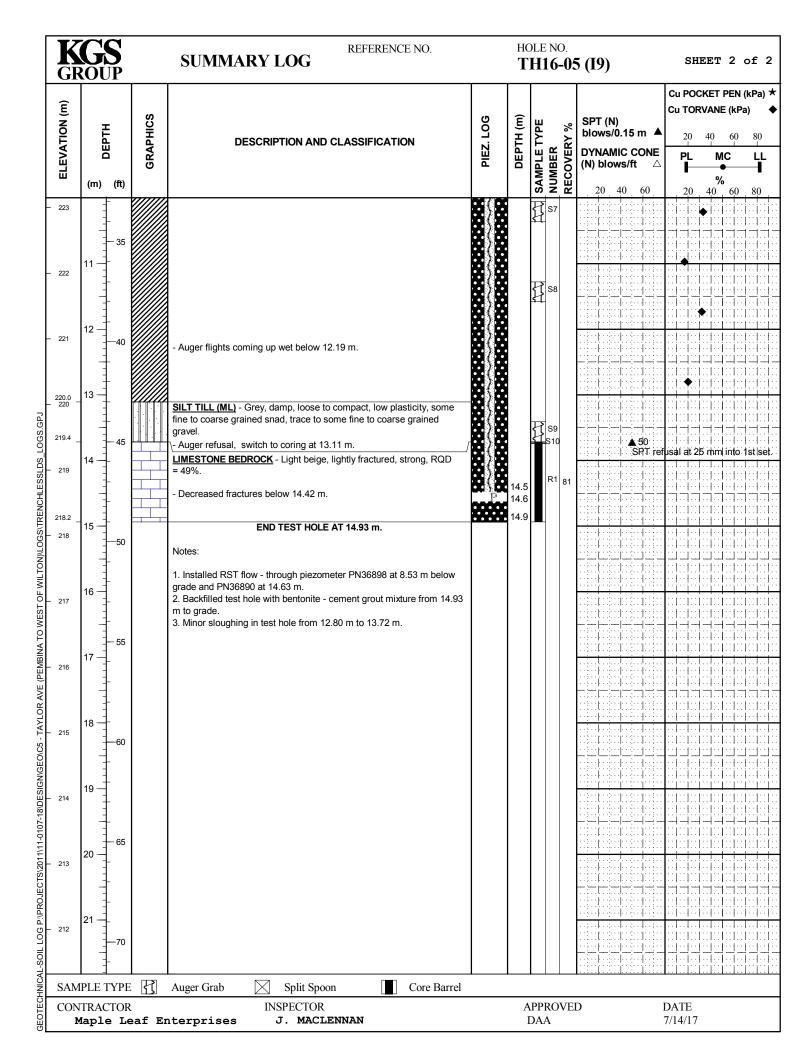
July 2017

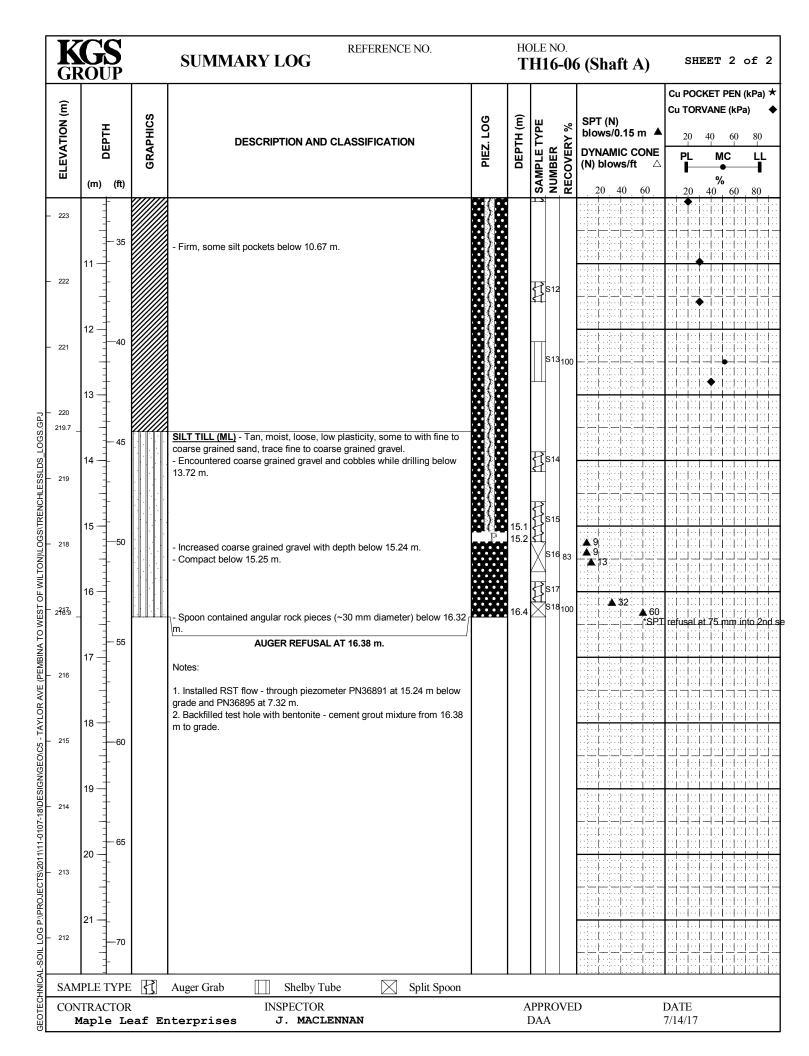

Figure A2

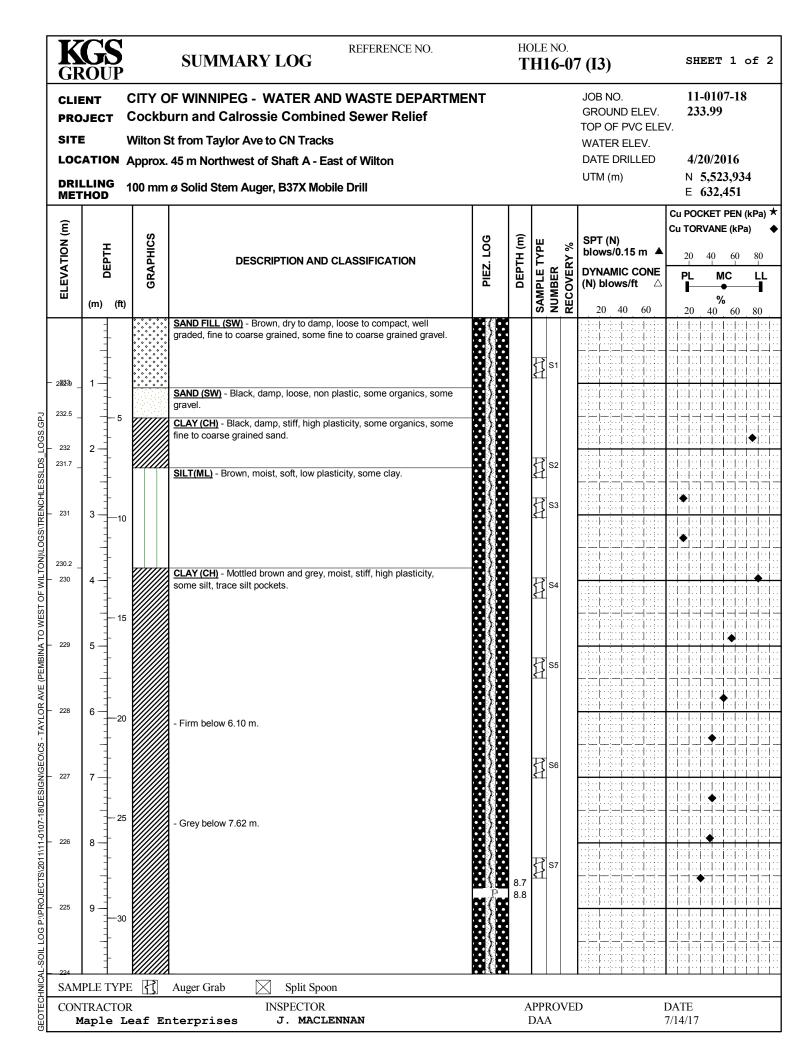

Page 1 of 1

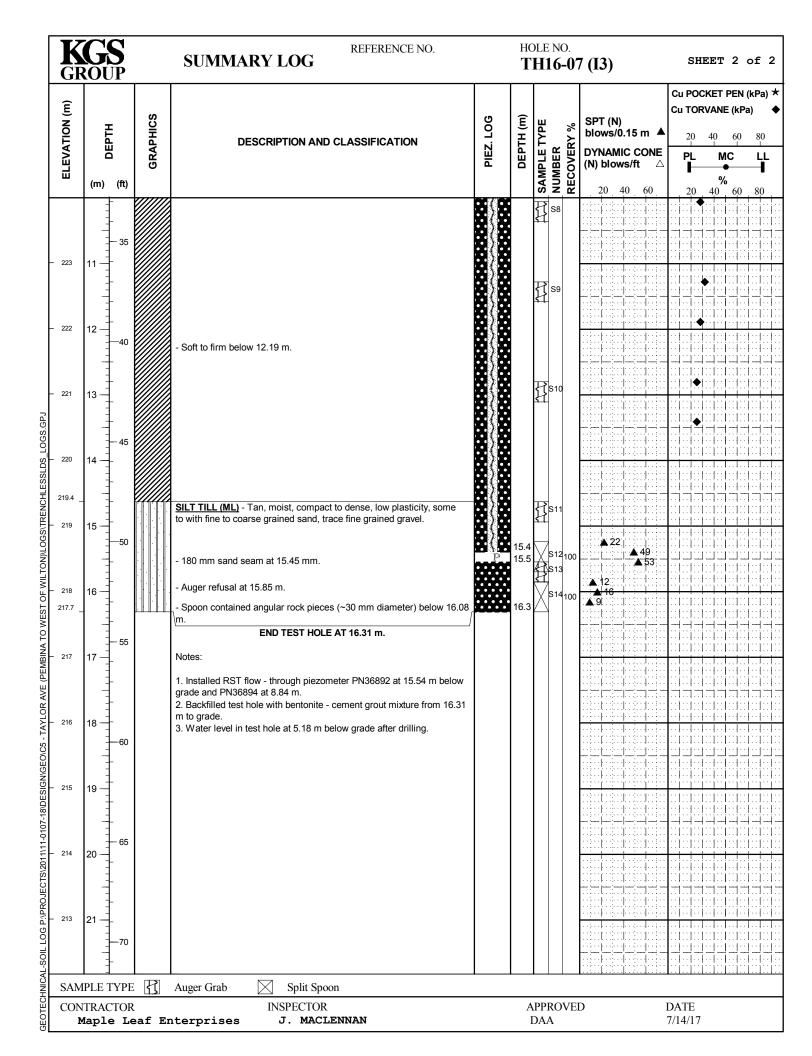

K	GS ROUP		SUMMARY LOG REFERENCE NO.	HOLE NO. TH16-0 2	I (I1)	SHEET 1 of 2
	ENT DJECT	_	F WINNIPEG - WATER AND WASTE DEPART urn and Calrossie Combined Sewer Relief	JOB NO. GROUND ELEV. TOP OF PVC ELE	11-0107-18 233.00	
SIT			t from Taylor Ave to CN Tracks		WATER ELEV.	
LOC	CATION	18 m No	rth of CN Tracks		DATE DRILLED	4/18/2016 N 5,523,861
	LLING THOD	100 mm	ø Solid Stem Auger, B37X Mobile Drill		UTM (m)	E 632,463
ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION		SPT (N) blows/0.15 m ▲	Cu POCKET PEN (kPa) ★ Cu TORVANE (kPa) ◆ 20 40 60 80
ELEVAT	DEF	GRAF	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE NUMBER RECOVERY %	DYNAMIC CONE (N) blows/ft	PL MC LL
	(m) (ft)		SAI	20 40 60	% 20 40 60 80
			SAND & GRAVEL FILL - Brown, wet, loose, some silt.			
232.1 - 232	1-1		CLAY (CH) - Grey, damp, stiff, high plasticity, some silt.			
231.5	5		SILT (ML) - Tan, moist, soft, low plasticity, some clay.	\$1		
231	2 -			\$2		
230.6	1 1		CLAY (CH) - Brown, moist, stiff, high plasticity, some silt.	-		
231.5 _ 231.6	3 - 1-1	. //////	- Water infiltrating test hole below 3.05 m.	\$3		
)ILOGS/			- Firm to stiff below 3.36 m.			
229 2 229	4 -		- Some silt nodules, oxidation below 3.66 m.	\$54		
≥ ○ <u>4</u> - 228	5—		- Firm below 4.57 m.			
L MBIN			- Grey below 5.18 m No silt nodules from 5.18 to 6.10 m.	\$5		
Ш А У О – 227			- Mottled grey and brown from 5.80 to 6.10 m.			
147						
]			\$6		
226 5 6 1	7—			3.1		
701-701-	2					
225	8 – 7			\$7		
DIECTS!	1					
224 - 224	9 - 3		- Trace to some fine to coarse grained sand below 9.14 m.			
228 - 228 - 227 - 227 - 227 - 227 - 226 - 227 -						
Z	<u> </u>			\$8		
SAN	ITP ACTO		Auger Grab Split Spoon	A DDD OX ZEY	D 1	DATE
	NTRACTO		INSPECTOR nterprises J. MACLENNAN	APPROVE DAA		DATE 7/14/17

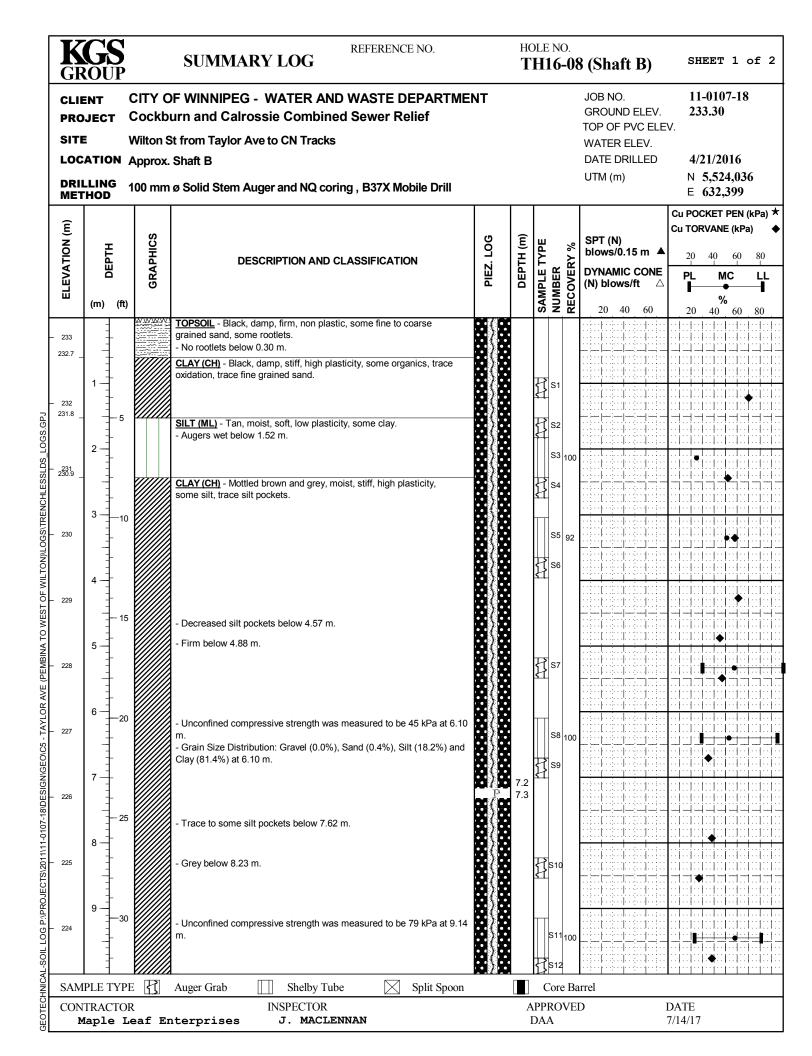

K	GS ROUP			HOLE N		2 (14/5)	SHEE	T 1 c	of 2
	JECT	Cockb	OF WINNIPEG - WATER AND WASTE DEPARTMENT urn and Calrossie Combined Sewer Relief			JOB NO. GROUND ELEV. TOP OF PVC ELE	233.9	107-18 92	
SITI			St from Taylor Ave to CN Tracks			WATER ELEV. DATE DRILLED	4/10/	2016	
			. 45 m Southeast of Shaft B - East of Wilton			UTM (m)		523,978	8
	LLING THOD	100 mm	n Ø Solid Stem Auger, B37X Mobile Drill			` ,		2,433	
ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE NUMBER	۲۲ %	SPT (N) blows/0.15 m	Cu POCKET PEN (kPa) 7 Cu TORVANE (kPa) 4 20 40 60 80		n) •
-EVA	🖁	GRA		PLE.	RECOVERY	DYNAMIC CONE (N) blows/ft △	PL.	MC	LL I
=	(m) (ft)		SAM	REC	20 40 60	20 4	% 0 60	80
	- - - - - - - - - - - - - - - -		SANDY SILT (ML) - Mottled black and brown, damp, loose to compact, non-plastic, with fine to coarse grained sand, trace fine to coarse grained gravel.	\$1					
- 233 2 232.4	1-1		- Low plasticity, some clay below 1.07 m.						
232	2 - 5		CLAY (CH) - Mottled grey and black, damp, stiff, high plasticity, some fine to coarse grained sand.	\$\frac{1}{2}\$\$2	2				
			SILT (ML) - Tan, damp to moist, low plasticity, soft, some clay, trace coarse grained sand.						
231	3 - 10			\$3 \$3	3				
230.4 _			CLAY (CH) - Brown, moist, stiff, high plasticity, some silt, trace silt nodules.						
230.4 _ 230	4			\$\frac{1}{5}\$\$	ı.			· · · · · · · · · · · · · · · · · · ·	
	5 —		- Mottled grey and brown, trace oxidation below 4.57 m.						
7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				\$\frac{1}{2} \ss	5				-104
228	6 - 20		- Firm below 6.10 m.					· · · · · · · · · · · · · · · · · · ·	
2 2 2 2 2 2 2 2 2 2 3 3 3 3 4 3 4 3 4 3	7			\$ S6	5				
		5 ////////////////////////////////////	- Grey, trace coarse grained sand below 7.62 m.						
226	8 - 1			\$\frac{1}{2} \text{s7}	,				
- 225	9 - 3		- Soft to firm below 8.54 m.				•		
229 229 229 228 226 226 226 226 226 226 226 226 226	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1								
SAM	IPLE TYF	E []	Auger Grab Split Spoon		1				
CON	TRACTO		INSPECTOR nterprises J. MACLENNAN	APPRO DAA	OVE		DATE 7/14/17		

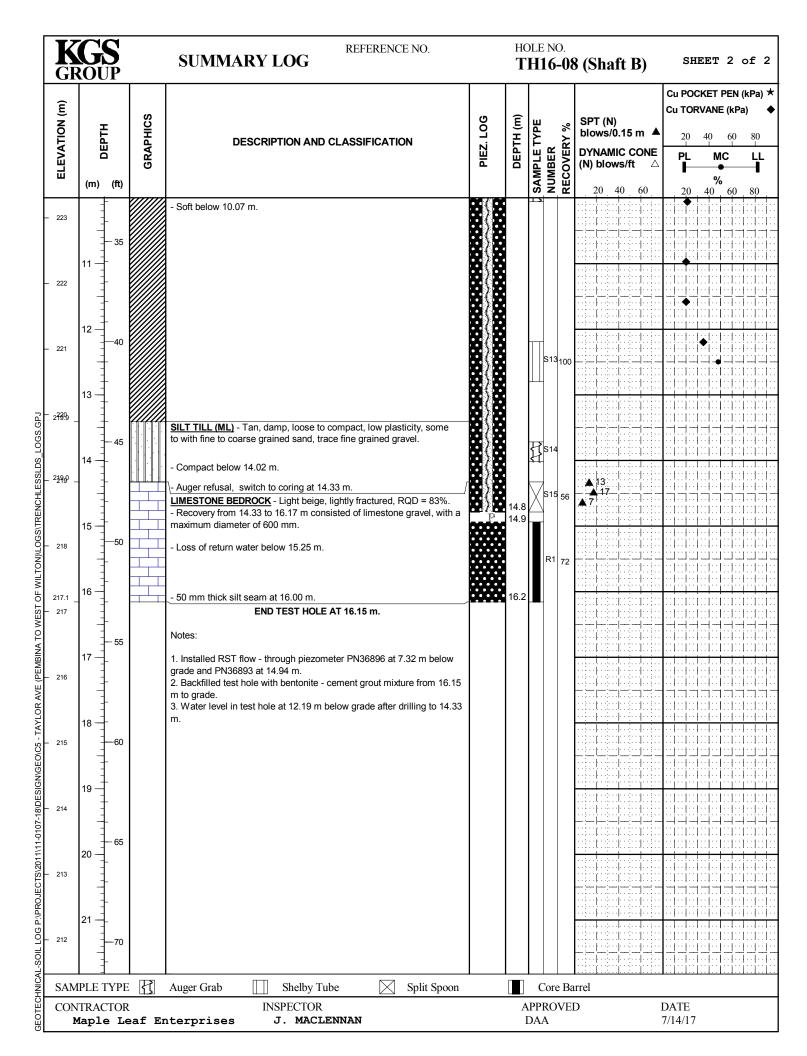


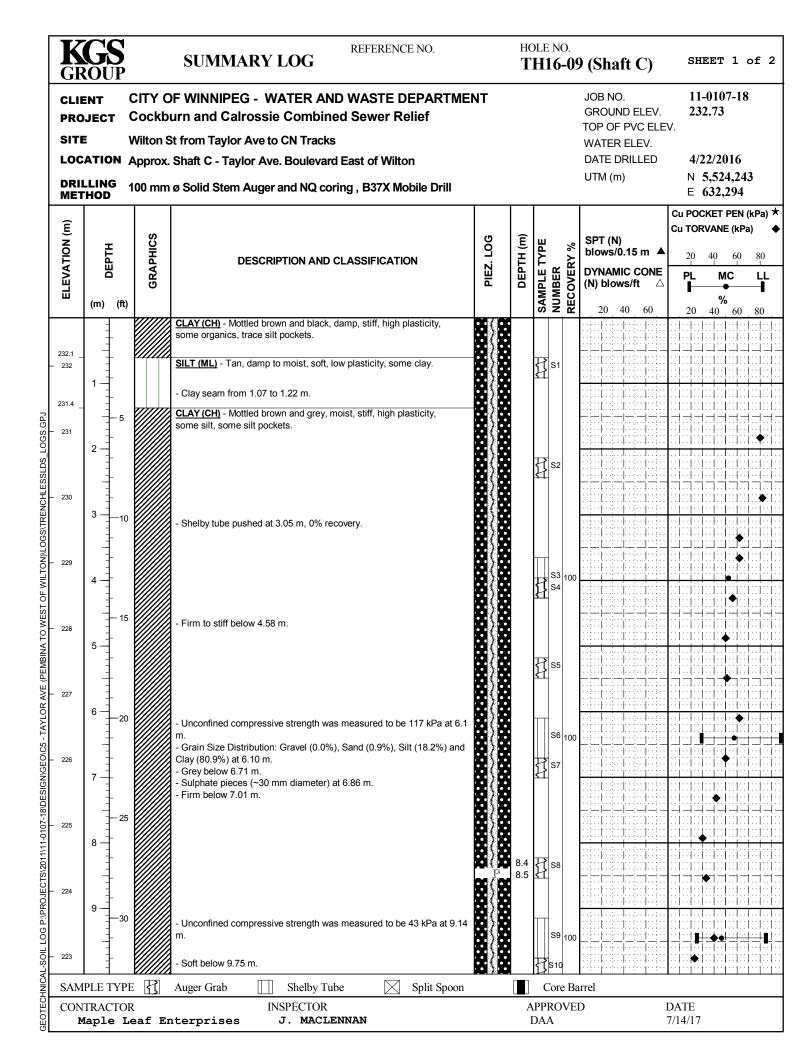

	K GR	GS	1	SUMMARY LOG REFERENCE NO.	HOLE NO. TH16-04	4 (I11)	SHEET 1 of 2
		JECT	Cockb	OF WINNIPEG - WATER AND WASTE DEPARTMENT ourn and Calrossie Combined Sewer Relief		JOB NO. GROUND ELEV. TOP OF PVC ELE	11-0107-18 233.02 V.
	SITE			St from Taylor Ave to CN Tracks		WATER ELEV.	
	LOC	ATION	Approx	. 50 m Southeast of Shaft C - East of Wilton		DATE DRILLED UTM (m)	4/19/2016 N 5,524,189
		LLING HOD	100 mm	ø Solid Stem Auger, B37X Mobile Drill		O TIM (III)	E 632,313
	ELEVATION (m) DEPTH		GRAPHICS	DESCRIPTION AND CLASSIFICATION	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m ▲	Cu POCKET PEN (kPa) ★ Cu TORVANE (kPa) ◆ 20 40 60 80
			GRAF	DESCRIPTION AND CLASSIFICATION		DYNAMIC CONE (N) blows/ft	PL MC LL
	Ш	(m) (fi)		SAM NUN REC	20 40 60	% 20 40 60 80
_		- - - - - -		CLAY FILL (CI) - Black, moist, firm, intermediate plasticity, some organics, trace fine grained gravel, trace fine to coarse grained sand.	\$1		20 40 00 00
_ -	232.1 _ 232	1-1-5		CLAY (CH) - Brown, damp, stiff, high plasticity, trace fine to coarse grained sand.			
ار.	231 230.7 _	2-			\$2		
ESSI	230.4 _	1	,,,,,,,	SILT (ML) - Brown, moist, soft, low plasticity, some clay.	S3		
LOGS/IF	² 29 0 _	3 - 1		CLAY (CH) - Brown, damp, stiff, high plasticity, some silt, trace fine to coarse grained sand. SILT (ML) - Brown, moist, soft, low plasticity, some clay.			
WILTON)	229.2	1		CLAY (CH) - Brown, moist, stiff, high plasticity, some silt, trace silt pockets.			
WESTOR	229	7	5	- Firm from 4.57 to 5.19 m.	\$4		
AVE (PEMBINA TO	228	5			\$5		
- IAYLOR	227	6-1-2		- Grey below 5.79 m. - Firm below 6.10 m. - Mottled brown and grey from 6.10 to 6.86 m.			<u> </u>
-18\DESIGN\GEO\C5	226	7			\$6		
-010/	225	8-1			\$ S7		
L LOG P:\PROJE	224	9 - 3	·	- Increased silt pockets from 8.54 m to 9.14 m Soft from 9.15 to 10.07 m.			
AL-SOI		1			D		
⊹⊢		PLE TYI		Auger Grab Split Spoon			
EO E		TRACTO		INSPECTOR nterprises J. MACLENNAN	APPROVE DAA		DATE 7/14/17

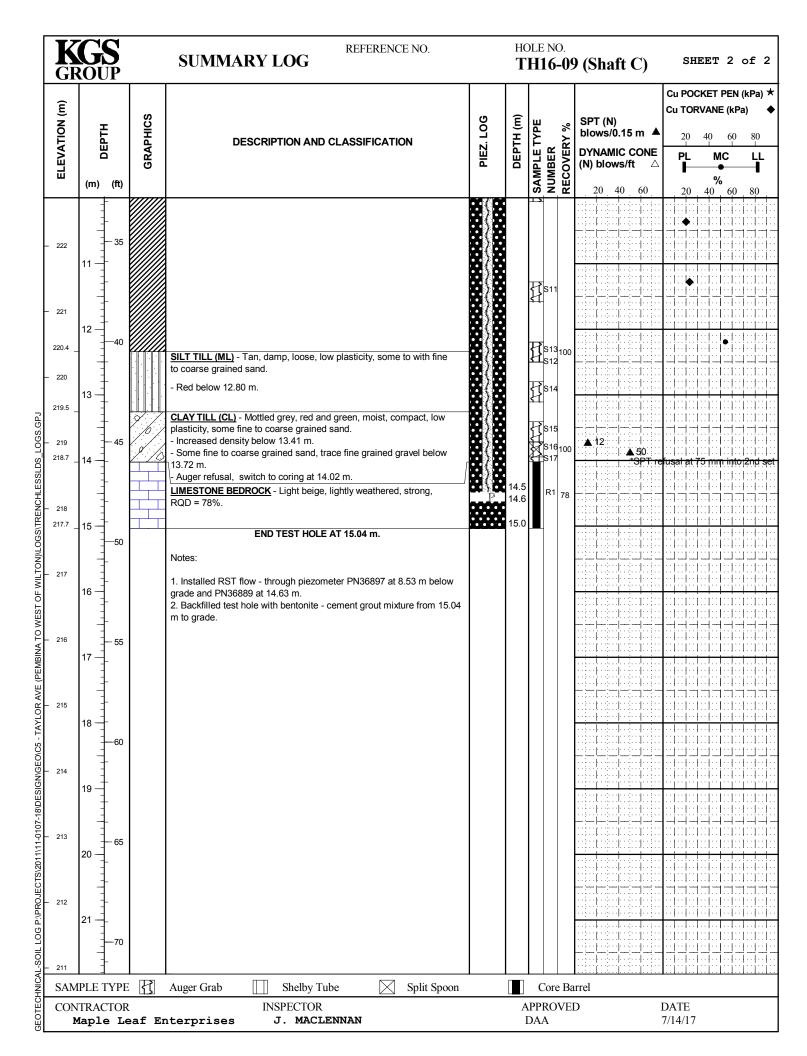



K	G	S JP		SUMMARY LOG REFERENCE NO.			DLE NO. H16-0	5 (19)	SHEET 1 of 2
PRO	ENT DJEC	т (Cockb	OF WINNIPEG - WATER AND WASTE DEPARTM urn and Calrossie Combined Sewer Relief	ENT			JOB NO. GROUND ELEV. TOP OF PVC ELE	11-0107-18 233.15 EV.
SIT				St from Taylor Ave to CN Tracks . 100 m Southeast of Shaft C - East of Wilton				WATER ELEV. DATE DRILLED	4/19/2016
	LLIN	_						UTM (m)	N 5,524,144
	ГНОВ		100 mm	ø Solid Stem Auger, B37X Mobile Drill			ı		E 632,333
ELEVATION (m)		DEV I	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m	Cu POCKET PEN (kPa) Cu TORVANE (kPa) 20 40 60 80
EVA.	2	ם ה	3RAF	DESCRIPTION AND CEASSIFICATION	PIEZ.	EPT	CE 1	DYNAMIC CONE (N) blows/ft	
	(m)	(ft)	~			_	AUME VECO	20 40 60	%
- 233	-	-		CLAY FILL (CI) - Mottled brown and black, moist, stiff, intermediate plasticity, with fine to coarse grained sand, some organics, some rootlets. - No rootlets below 0.30 m.			0 2 6	20 40 60	20 40 60 80
232.1 - 232	1	-		CLAY (CH) - Brown, damp, stiff, high plasticity.	8/8		\$1		
231.6	-	-5		SILT (ML) - Tan, moist, soft, low plasticity, some clay.			Z T		
90	2 -	-			3/3		\$2 \$2		
231	- =	-					\$1		
230.6	-	-		CLAY (CH) - Brown, damp, stiff, high plasticity, some silt.					
230.1	3 -								
230	=	-		SILT (ML) - Tan, moist, soft, low plasticity, some clay.	8/8				
	1 -	-		CLAY (CH) - Brown, moist, stiff, high plasticity, some silt, trace silt pockets.	8/8				
229	4 -	-							<u> </u>
	=	<u>.</u>					\$3		
> >	=	15		- Silt seam from 4.57 to 4.88 m.			3.1		
- 228	5 —			- Firm below 4.88 m.					
	=			- Grey below 5.18 m.			13		
1 A	=	-					\$4 		
227	6 —	20							
3	-	-							
ָ ס ס		-					\$5 \$5		
226	7-	-					5.1		
	-	25							
	=	20		0.64.5					
225	8 —	-		- Soft to firm, silt pockets below 7.92 m.		8.4	D		
01010	-	-			Р	8.5	\$6 \$6		
I CONTRACTOR OF THE CONTRACTOR	9 —	-							
224	=	-30							
	-	-							
AL-5(
├	IPLE T			Auger Grab Split Spoon Core Barre	l			_	
	NTRA(Mapl			INSPECTOR nterprises J. MACLENNAN			.PPROVE DAA		DATE 7/14/17




K GI	GS ROUP		SUMMARY LOG REFERENCE NO.			DLE NO. H16-0 (6 (Shaft A)	SHEET 1 of 2
PRO	ENT DJECT	Cockb	OF WINNIPEG - WATER AND WASTE DEPARTMI ourn and Calrossie Combined Sewer Relief	ENT			JOB NO. GROUND ELEV. TOP OF PVC ELE	11-0107-18 233.27 V.
DRI	E CATION ILLING THOD	Approx	St from Taylor Ave to CN Tracks . Shaft A . ø Solid Stem Auger, B37X Mobile Drill				WATER ELEV. DATE DRILLED UTM (m)	4/20/2016 N 5,523,883 E 632,477
ELEVATION (m)	ОЕРТН	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m DYNAMIC CONE (N) blows/ft	Cu POCKET PEN (kPa) ** Cu TORVANE (kPa) ** 20 40 60 80 PL MC LL
	(m) (ft)				SAN	20 40 60	% 20 40 60 80
- 233 232.2	1		CLAY FILL (CH) - Mottled brown and black, damp, stiff, high plasticity, some fine to coarse grained sand, trace organics. - Increased sand content between 0.61 and 0.91 m. - Trace silt lenses below 0.76 m.	Tampote Sample Strange Strange Strange		丑 ⁸¹		•
- 232 - 232 20 20 231.3			CLAY (CH) - Black, damp, stiff, high plasticity, some organics, trace fine to coarse grained sand.	production of the second secon		S2		
231	2		SILT (ML) - Tan, moist, soft, low plasticity, trace clay Increased clay content below 2.29 m.			\$3		
230.1	3 -10		- Auger flights coming up wet below 3.05 m. CLAY (CH) - Mottled brown and grey, moist, stiff, high plasticity, some silt, trace silt pockets.			S4 ₁₀₀		
- 229 - 229	4	5	- 12 mm diameter silt inclusion at 4.11 m.	0.04.0.0		\$5		
228 - 228	5 - 1					\$6		
Ž – 227	6 - 20		- Firm below 6.10 m. - Test hole sloughing at 6.10 m. - Unconfined Compressive Strength measured to be 45 kPa at 6.10 m. - Grain Size Distribution: Gravel (0.0%), Sand (0.5%), Silt (19.4%) and	Stanton Stanton Stanton Stanton		S7 ₁₀₀		
- 226	7	5	Clay (80.1%) at 6.10 m.	p .	7.2 7.3	\$8		•
- 225	8 - 1		- Grey below 8.53 m.	The state of the s		\$9 \$9		→
224 D 224	9 - 30		- Soft below 9.14 m. - Unconfined conmpressive strength was measured to be 53 kPa at 9.14 m. - No recovery from 9.14 to 9.75 m.			S10 ₁₀₀		
₹┣──		<u>/////</u>	1			₹S11		
CON	MPLE TYP NTRACTO Maple I	R	Auger Grab Shelby Tube Split Spoon INSPECTOR nterprises J. MACLENNAN			PPROVE		DATE 7/14/17





APPENDIX B 2017 TEST HOLE LOGS

KGS GROUP

SOIL DESCRIPTION CRITERIA

PRINCIPAL AND MINOR SOIL COMPONENTS

And 35-50% With 20-35% Some 10-20% Trace 0-10%

Occasional Trace of very local concentration

FIELD MOISTURE CONTENT

Dry No moisture visible or to touch when fresh exposure is examined

Damp Slightly wet to touch Moist Fresh exposure wet to touch

Wet A film of water is readily visible around particles of granular soils, cohesive soils can readily be smeared or remolded; water can be squeezed

out

Saturated Water can easily be squeezed out

Free Water Water completely separated from the soil particles

DEPOSITIONAL STRUCTURE

Massive Structureless soil

Stratified (Layered) Different soils or visible variations in soil constituents arranged in layers, generally but not necessarily parallel to one another,

and not necessarily in horizontal position, at least 6 mm thick

Varved Glaciolacustrine deposits with annual pairs of fine and coarser laminae (thin laminae of alternately deposited inorganic silt and

clay)

Laminated Closely spaced, regularly alternating layers of differing soils and/or colours, or shades of similar gradation, relatively consistent in

thickness and consisting of sand, silt, or clay

Lens Inclusions of a different soil within surrounding soils, which thins out horizontally and may not be continuous over any

significant distance

Pocket A different soil type of very limited thickness or lateral extent (a small lens)

Inclusions Small pockets

Nuggety A different soil type in the form of small lumps Parting Paper thin separation of one type by another

POST DEPOSITIONAL STRUCTURE

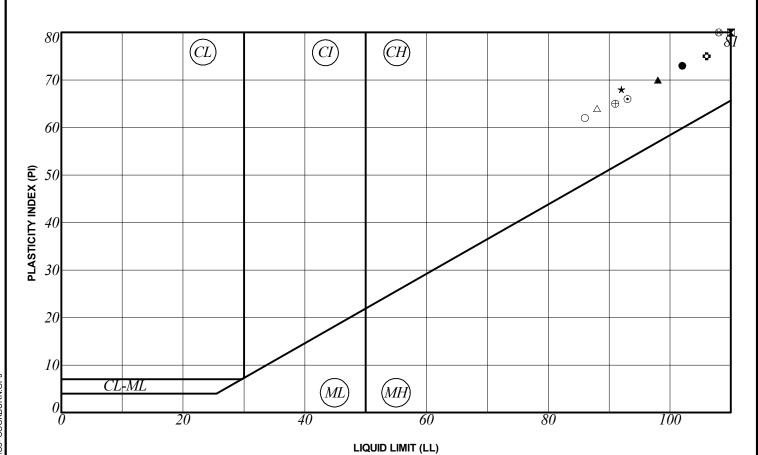
Fissured A soil breaks along definite, pre-existing planes or fracture with little resistance to fracturing

Slickensided Polished or glossy, sometimes striated surfaces resulting from movement of a material block relative to the adjacent blocks
Blocky/Friable/Platy Cohesive soil that can be broken down into angular larger fragments (blocky), small fragments (friable), or thin plate-like

fragments (platy) which resist further breakdown

Cemented Soil particles or fragments held together by cemented materials, often chemical precipitants, or deposits within overall soil mass

GRAIN SIZE DISTRIBUTION IN COARSE GRAINED SOIL


 $\begin{array}{lll} \mbox{Boulders} & >& 200 \mbox{ mm } \mbox{\o} \\ \mbox{Cobbles} & 75-200 \mbox{ mm } \mbox{\o} \\ \mbox{Coarse Grained Gravel} & 19-75 \mbox{ mm } \mbox{\o} \\ \mbox{Fine Grained Sand} & 4.75-19 \mbox{ mm } \mbox{\o} \\ \mbox{Coarse Grained Sand} & 2-4.75 \mbox{ mm } \mbox{\o} \\ \mbox{Medium Grained Sand} & 0.425-2 \mbox{ mm } \mbox{\o} \\ \mbox{Fine Grained Sand} & 0.075-0.425 \mbox{ mm } \mbox{\o} \\ \mbox{\o} \end{array}$

DENSITY OF GRANULAR SOIL

Description	Standard Penetration Test	Relative Density
Very Loose	0-4 Blows Per 0.3 m	<15%
Loose	4 – 10 Blows Per 0.3 m	15 - 35%
Compact	10 - 30 Blows Per 0.3 m	35 - 65%
Dense	30 - 50 Blows Per 0.3 m	65 - 85%
Very Dense	>50 Blows Per 0.3 m	>85%

CONSISITENCY OF COHESIVE SOILS

Description	Torvane	Standard Penetration Test
Very Soft	<12 kPa	<2
Soft	12 – 25 kPa	2 - 4
Firm	25 - 50 kPa	4 - 8
Stiff	50 - 100 kPa	8 - 15
Very Stiff	100 - 200 kPa	15 - 30
Hard	>200 kPa	>30

SYMBOL	HOLE	DEPTH (m)	SAMPLE#	LL	PL	PΙ	% SAND	% SILT %	6 CLAY	% MC	CLASSIFICATION
•	TH17-01	3.8	S3	102	29	73				53.1	CH
	TH17-01	4.9	S4	110	29	81				55.4	CH
A	TH17-06	3.8	S3	98	28	70				48.7	CH
*	TH17-06	6.4	S6	92	24	68				50.0	CH
•	TH17-06	9.0	S9	93	27	66				48.4	CH
•	TH17-10	3.8	S2	106	31	75				54.2	CH
\circ	TH17-10	6.4	S6	86	24	62				47.8	CH
Δ	TH17-10	11.4	S11	88	24	64				48.5	CH
\otimes	TH17-15	4.9	S4	108	28	80				51.8	CH
\oplus	TH17-15	6.4	S6	91	26	65				50.4	CH

Notes:

ML - Low Plasticity Silt MH - High Plasticity Silt
CL-ML - Silty Clay
CL - Low Plasticity Clay
CI - Intermediate Plasticity Clay
CH - High Plasticity Clay

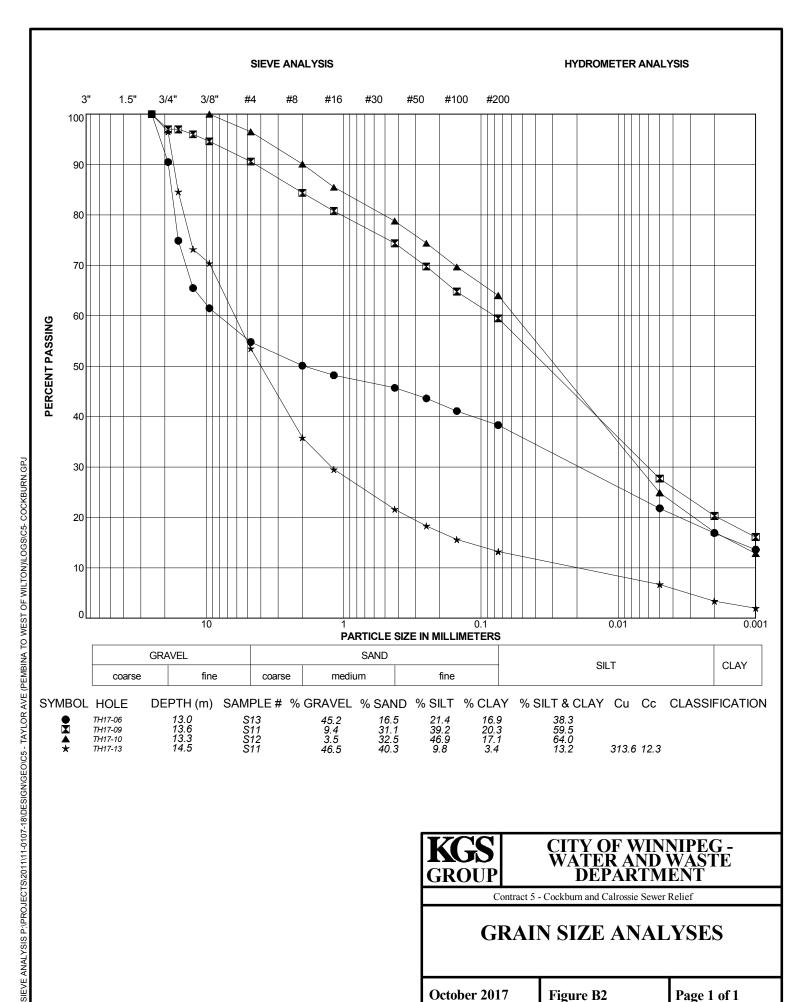
LL - Liquid Limit

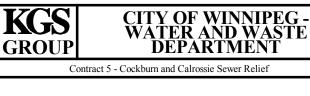
PL - Plastic Limit PI - Plasticity Index

MC - Moisture Content

NP - Non-Plastic

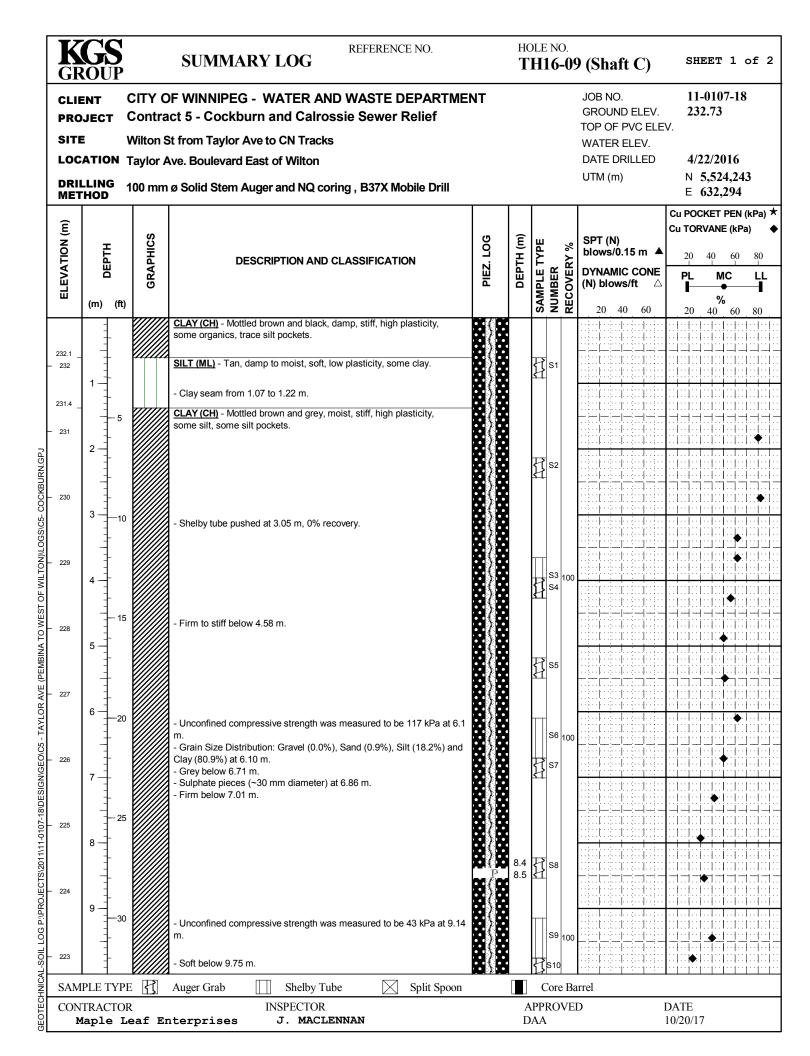
CITY OF WINNIPEG -WATER AND WASTE DEPARTMENT

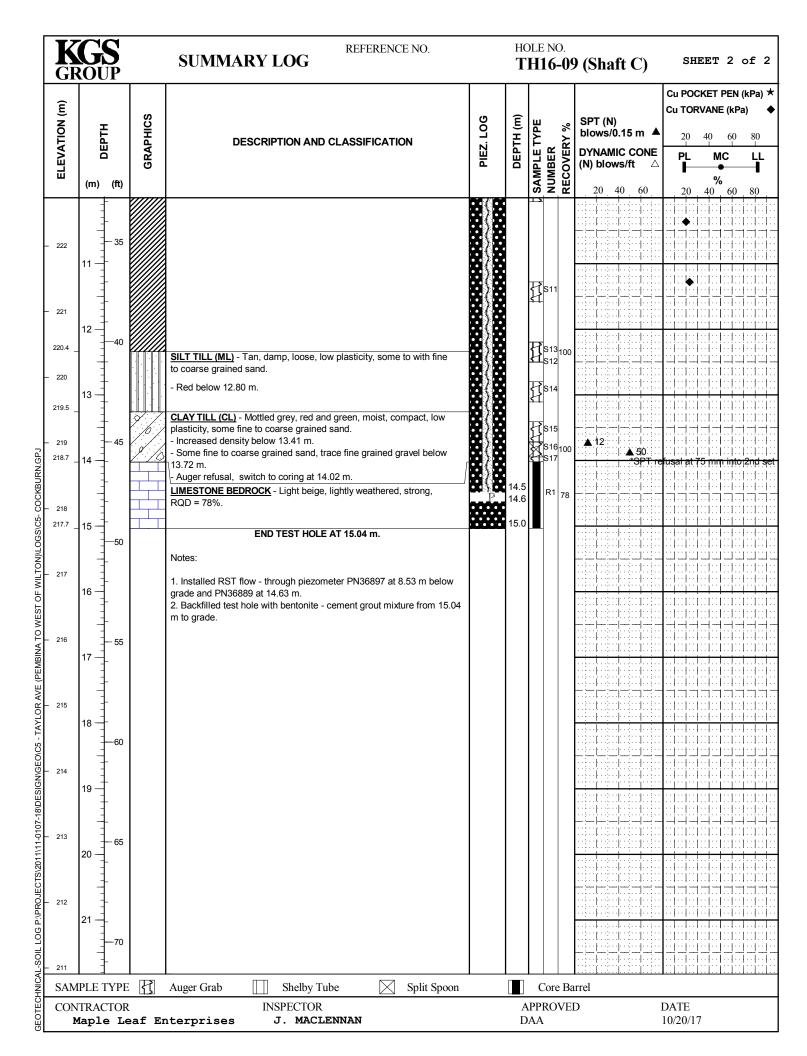

Contract 5 - Cockburn and Calrossie Sewer Relief

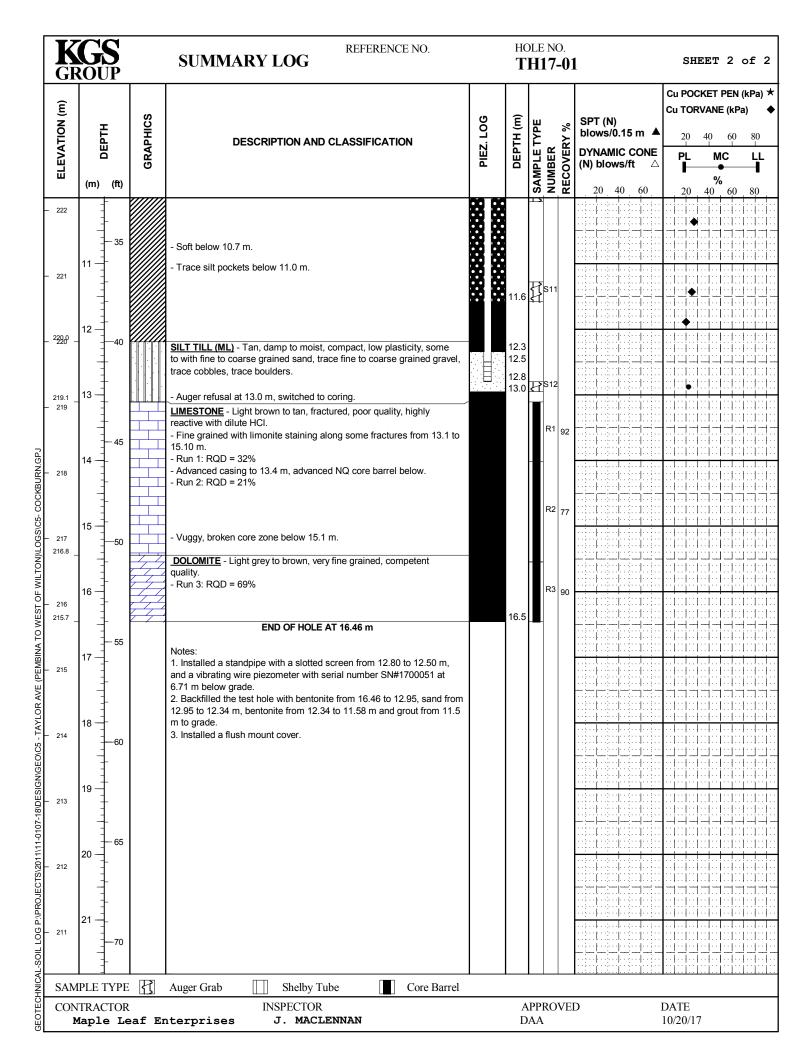

A-LINE PLOT

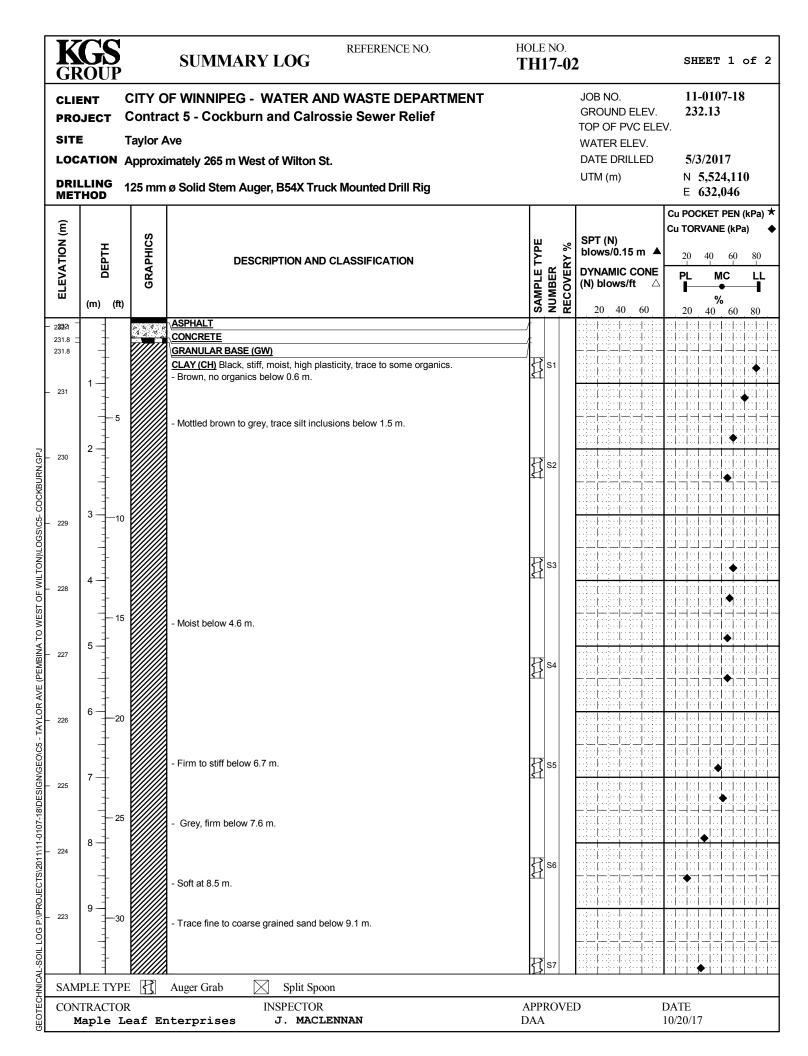
October 2017

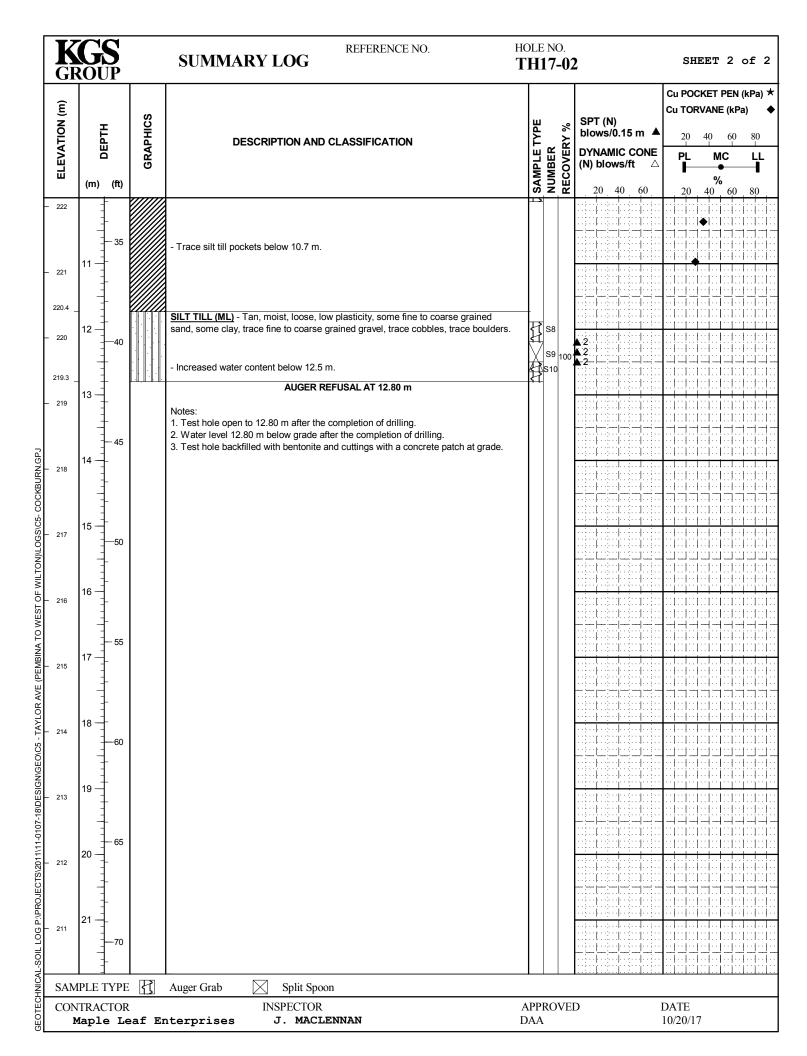
Figure B01

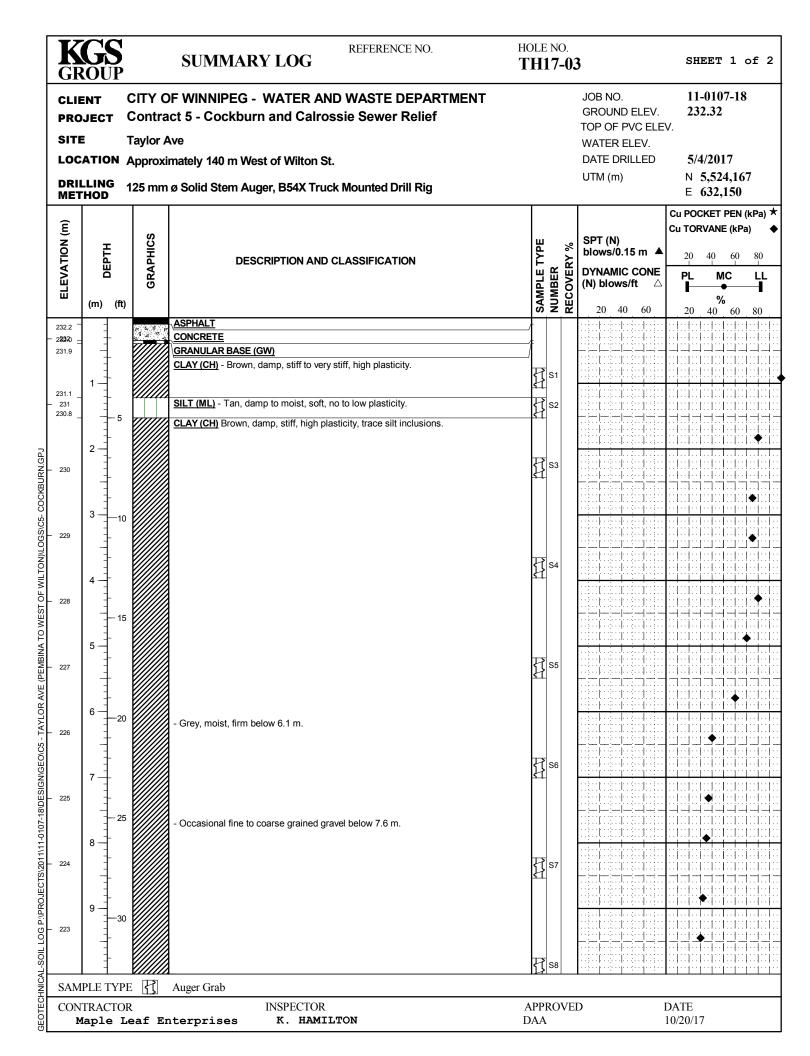

Page 1 of 1

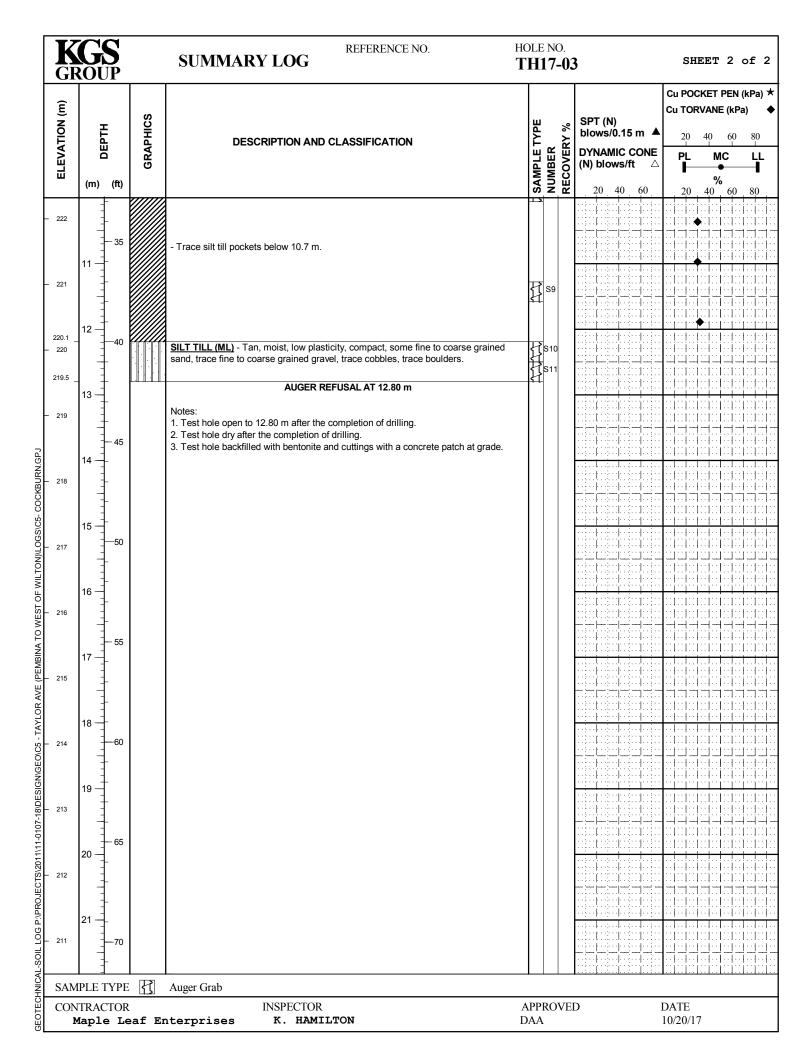


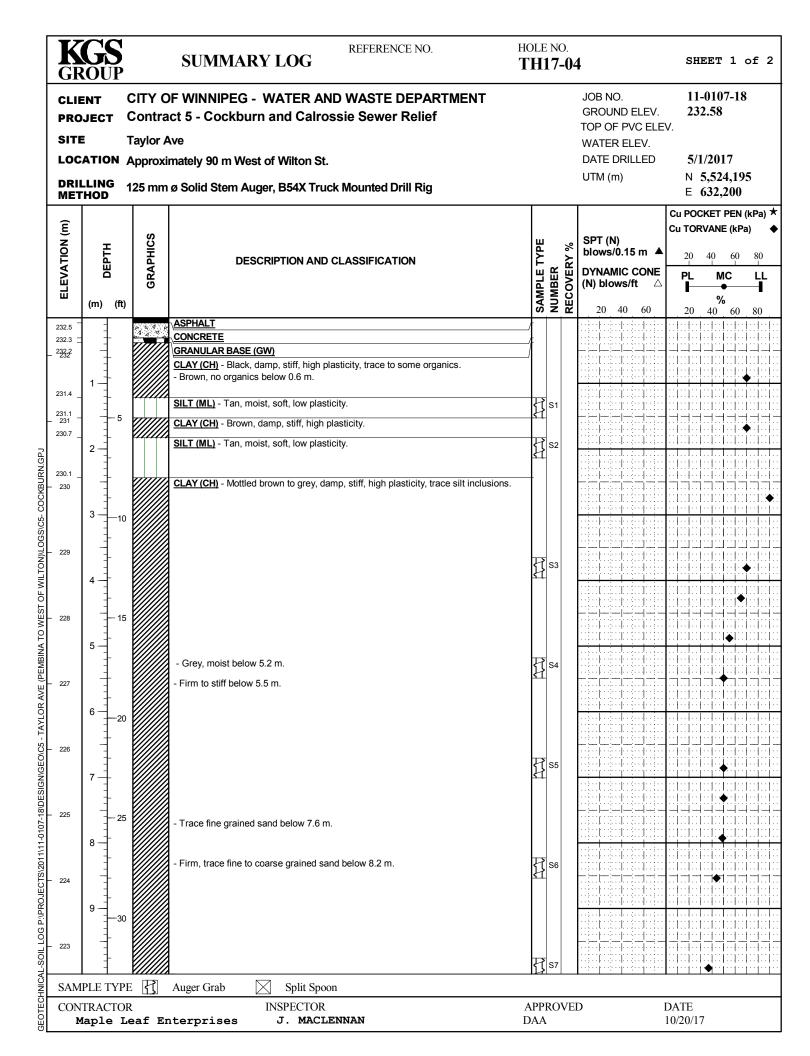

GRAIN SIZE ANALYSES

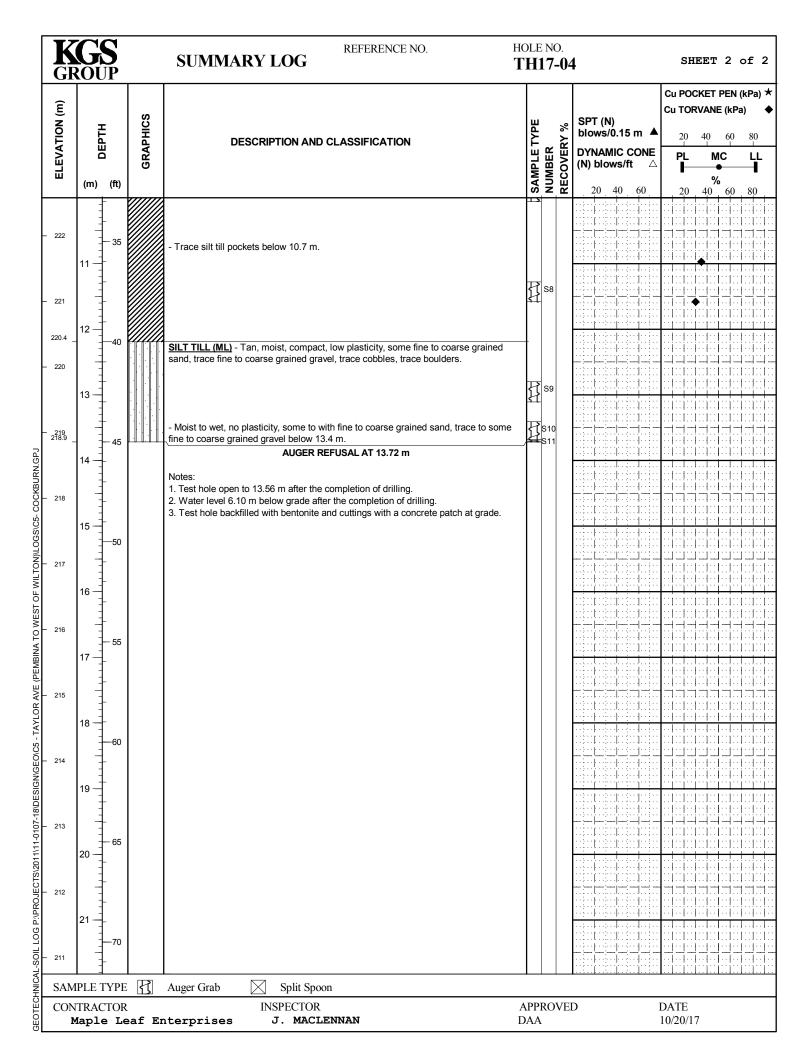

October 2017 Figure B2 Page 1 of 1

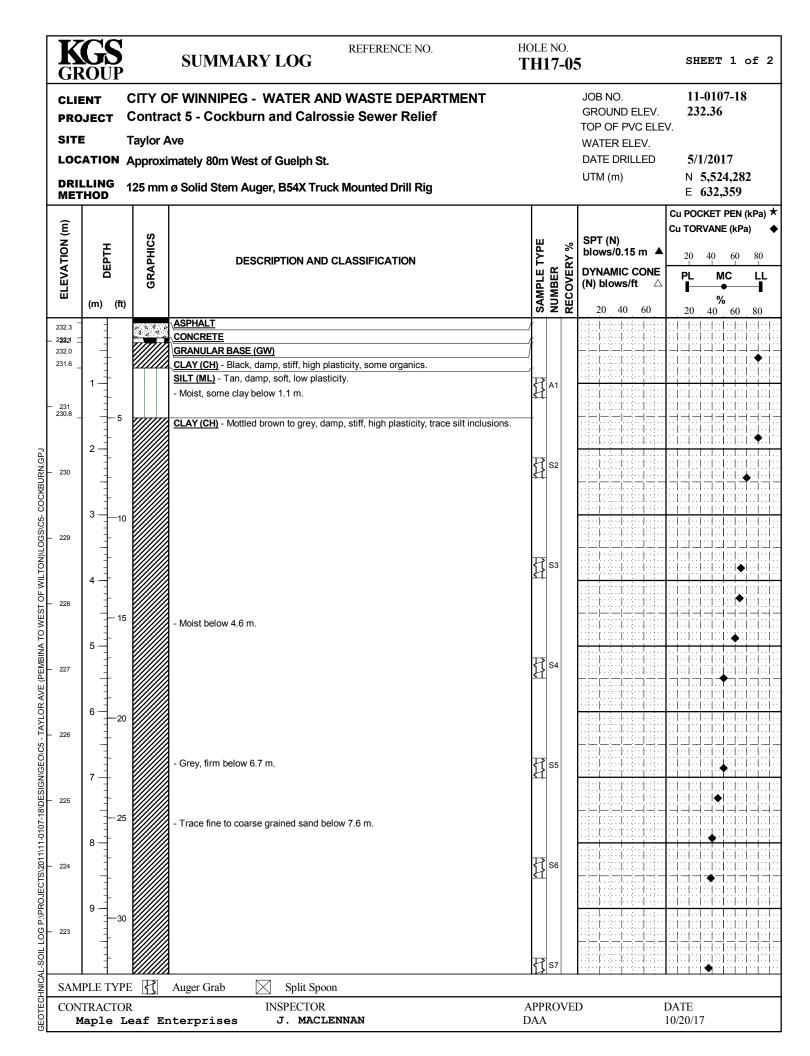




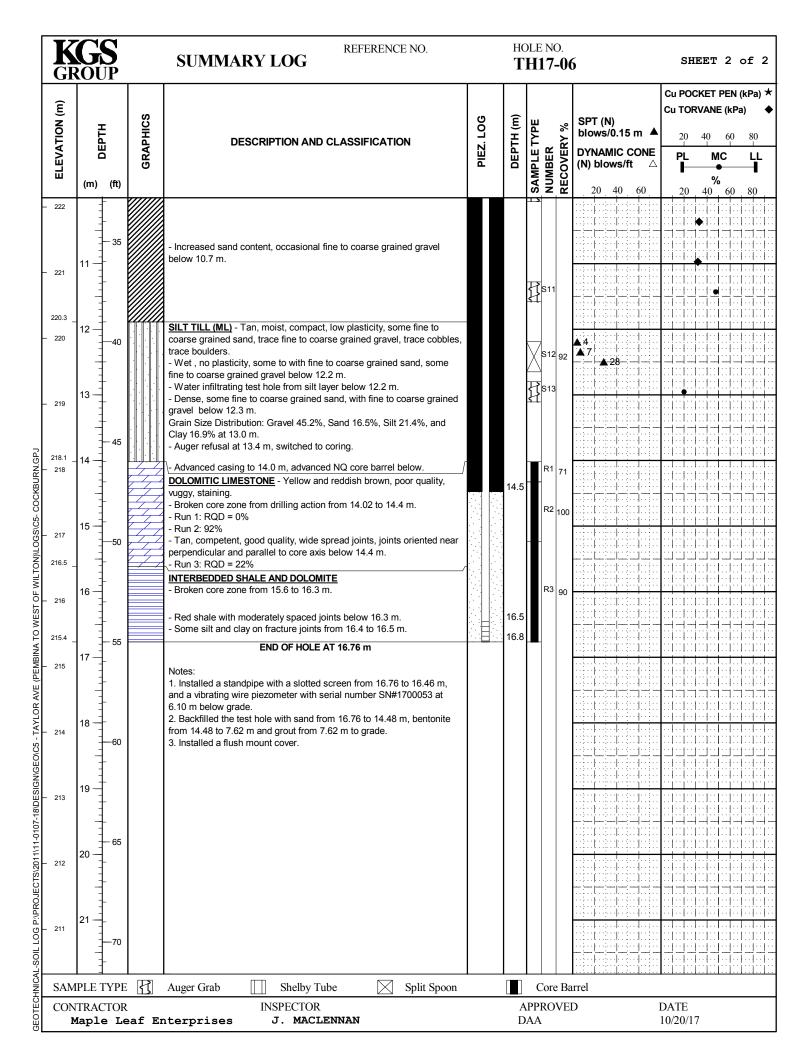

	K	G	S JP		SUMMARY LOG REFERENCE NO.			DLE N		1	SHEET 1 of 2
Ī	CLIE	ENT	(_	F WINNIPEG - WATER AND WASTE DEPAR ct 5 - Cockburn and Calrossie Sewer Relief	TMENT				JOB NO. GROUND ELEV. TOP OF PVC ELE	11-0107-18 232.19 V.
	LOC DRII MET	ATIC	ON A		ove mately 320 m West of Wilton St. ø Solid Stem Auger, and NQ coring, B54X Truck Mou	unted Drill Riç	3			WATER ELEV. DATE DRILLED UTM (m)	5/3/2017 N 5,524,081 E 631,992
	ELEVATION (m)	(m)	(ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	RECOVERY %	SPT (N) blows/0.15 m ▲ DYNAMIC CONE (N) blows/ft △ 20 40 60	Cu POCKET PEN (kPa) * Cu TORVANE (kPa) 20 40 60 80 PL MC LL % 20 40 60 80
F	23221 231.9 =	-	-		ASPHALT CONCRETE GRANULAR FILL (GW) CLAY (CH) - Brown trace black, damp, stiff, high plasticity, trace						
	231	1	_ _ 5		organics Brown, no organics below 0.6 m. - Trace silt inclusions below 1.5 m.			₹ s			
CKBURN.GPJ	230	2 -	 - -		- 75 mm clayey silt pocket at 2.2 m Mottled brown to grey below 2.3 m.	88888888888888888888888888888888888888		₹} s:	2		
WEST OF WILTON)/LOGS/C5- COCKBURN.GPJ	229	3 —	—10 -		- Moist below 3.1 m.	8888		₽°.	3		
	228	4	- - 15		- Unconfined Compressive Strength was measured to be 117 kPa			s:			
AVE (PEMBINA TO	227	5	- - -		4.6 m Grey below 4.9 m Firm below 5.5 m.			S s	⁴ 100		
EO/C5 - TAYLOR	226	6	—20 -				6.7 6.9		6 ₇₉		
1107-18\DESIGN\G	225	7 —	_ 25					 			
GEOTECHNICAL-SOIL LOG P.\PROJECTS\2011/11-0107-18\DESIGN\GEO\C5 - TAYLOR AVE (PEMBINA TO	224	8	<u>-</u>		- Unconfined Compressive Strength measured to be 48 at 7.9 m.			S:			
-SOIL LOG P:\PRC	223	9	—30 - -		- Trace fine to coarse grained sand, trace silt pockets below 9.1 n			₹{s1	0		
CHNICAL	SAM				Auger Grab Shelby Tube Core Ba	18.80 18.80					
GEOTE	CON M				INSPECTOR terprises J. MACLENNAN			PPRO AA	OVE		DATE 10/20/17

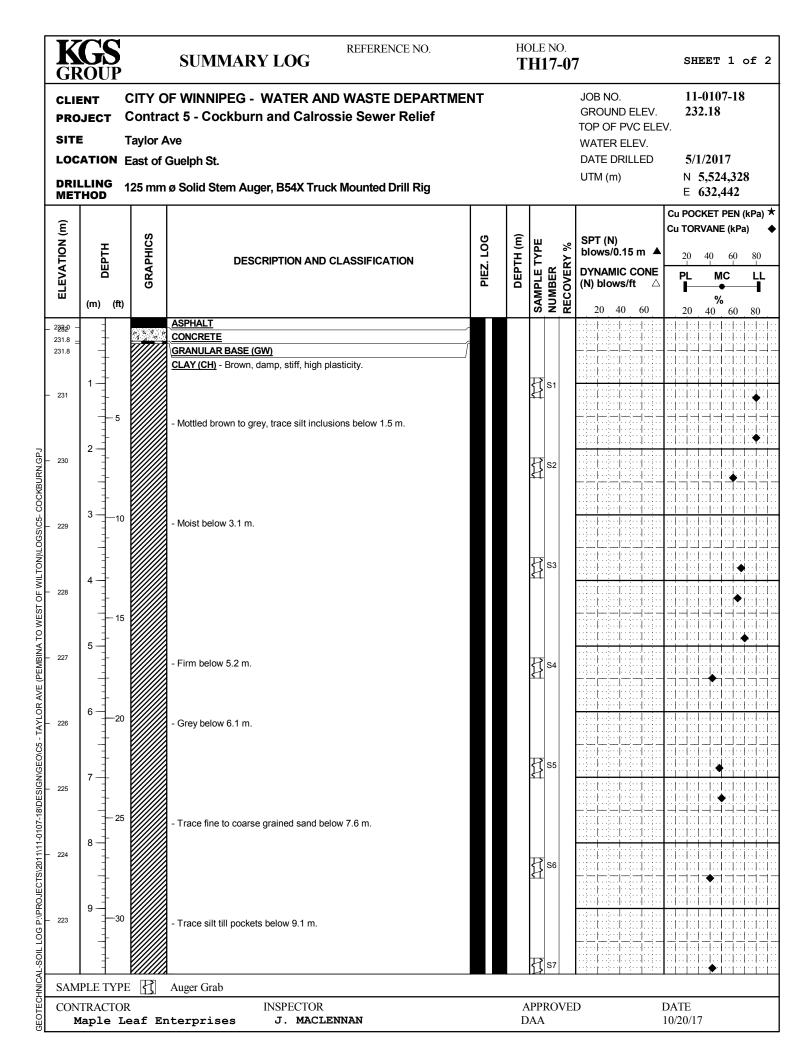


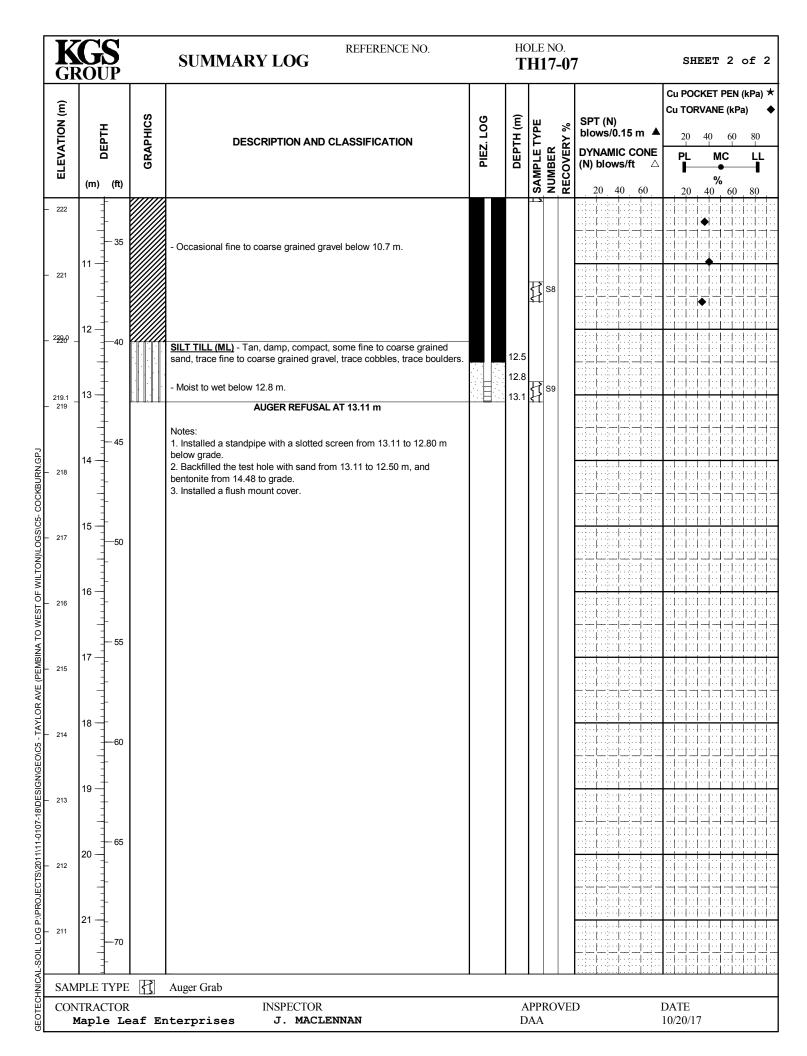


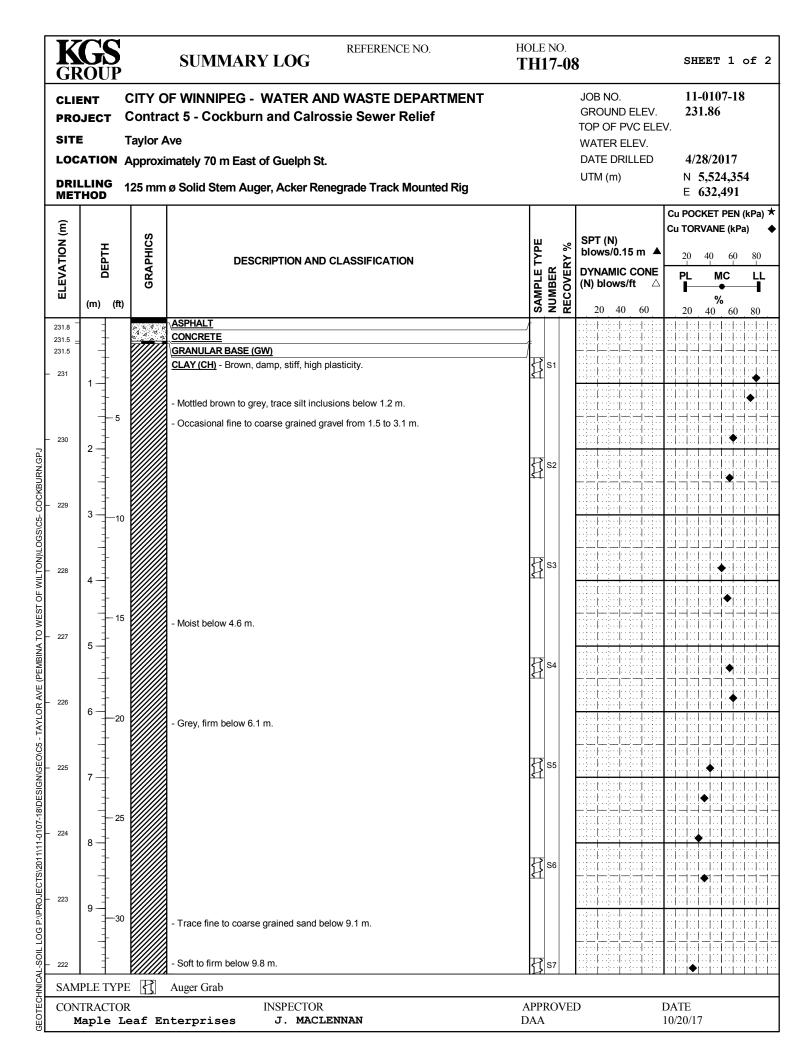


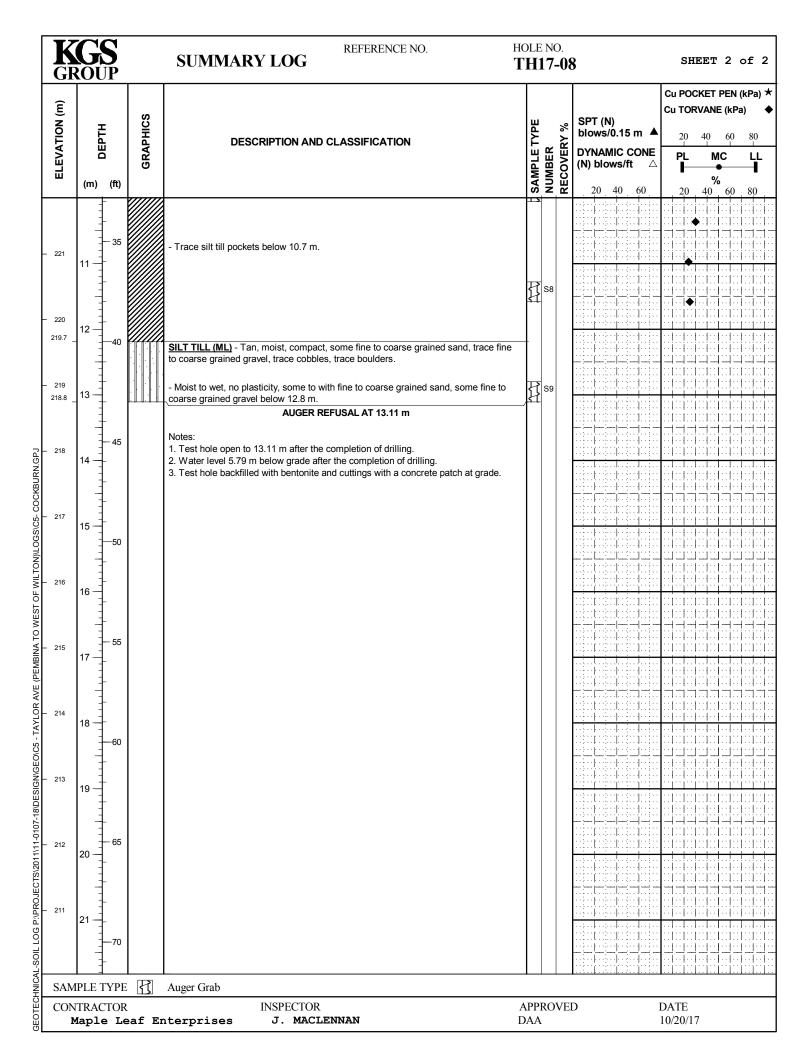


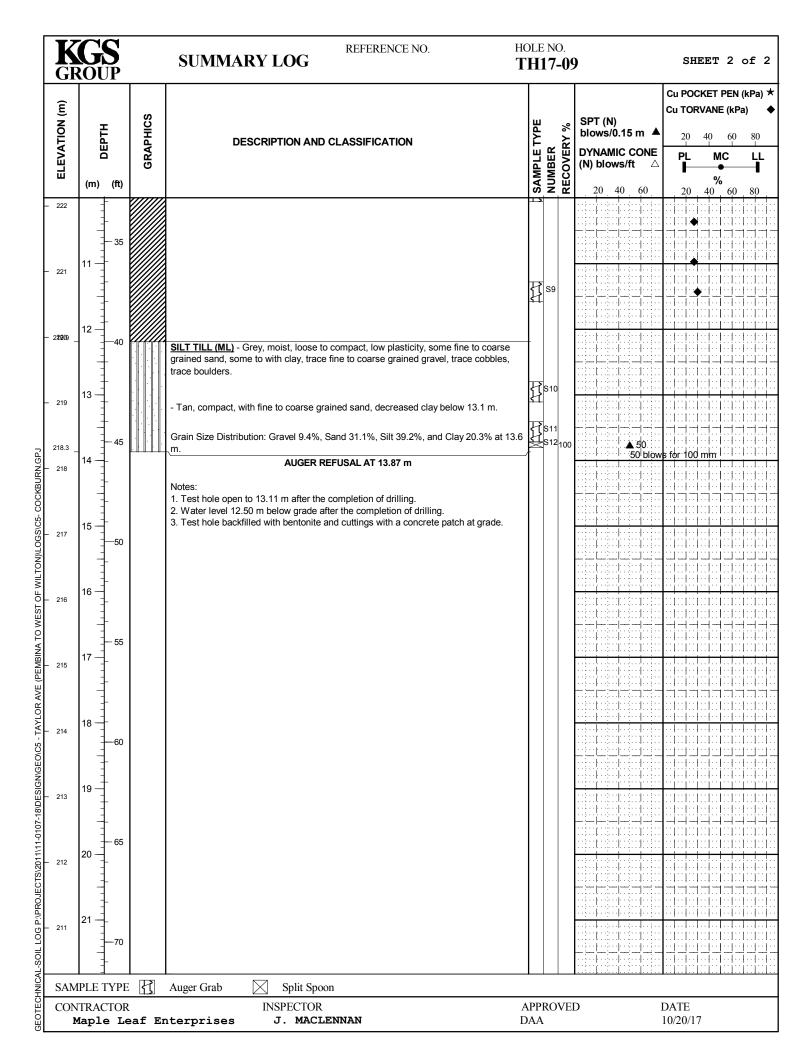


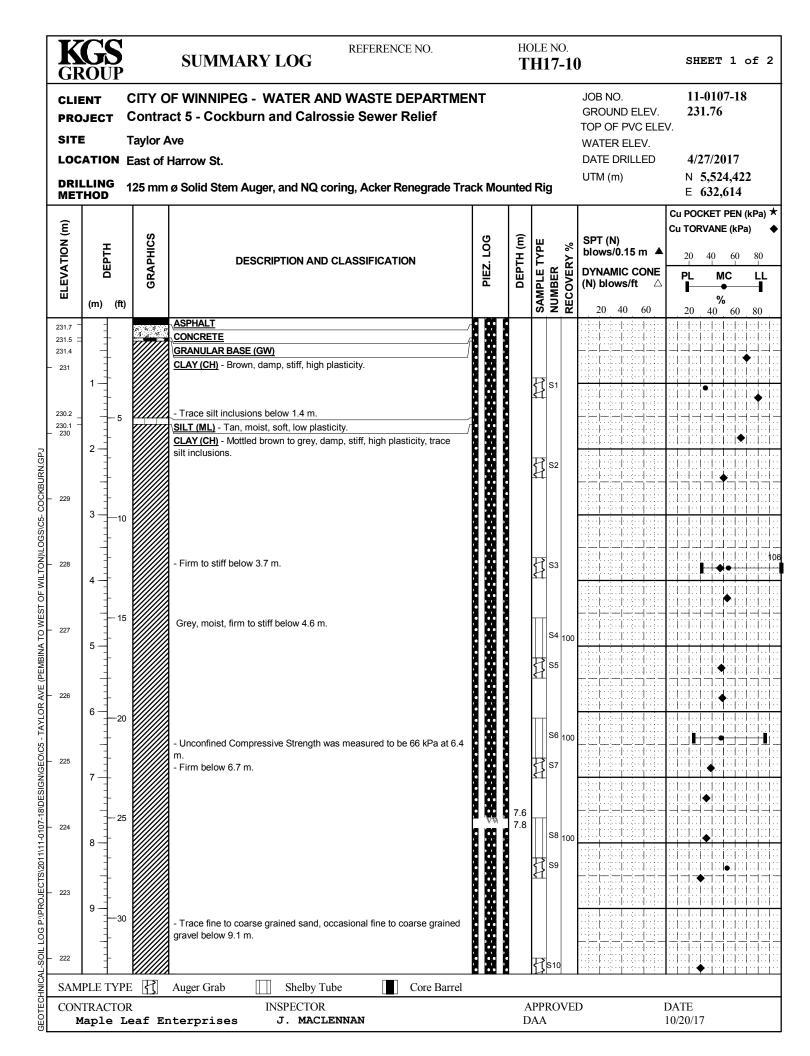


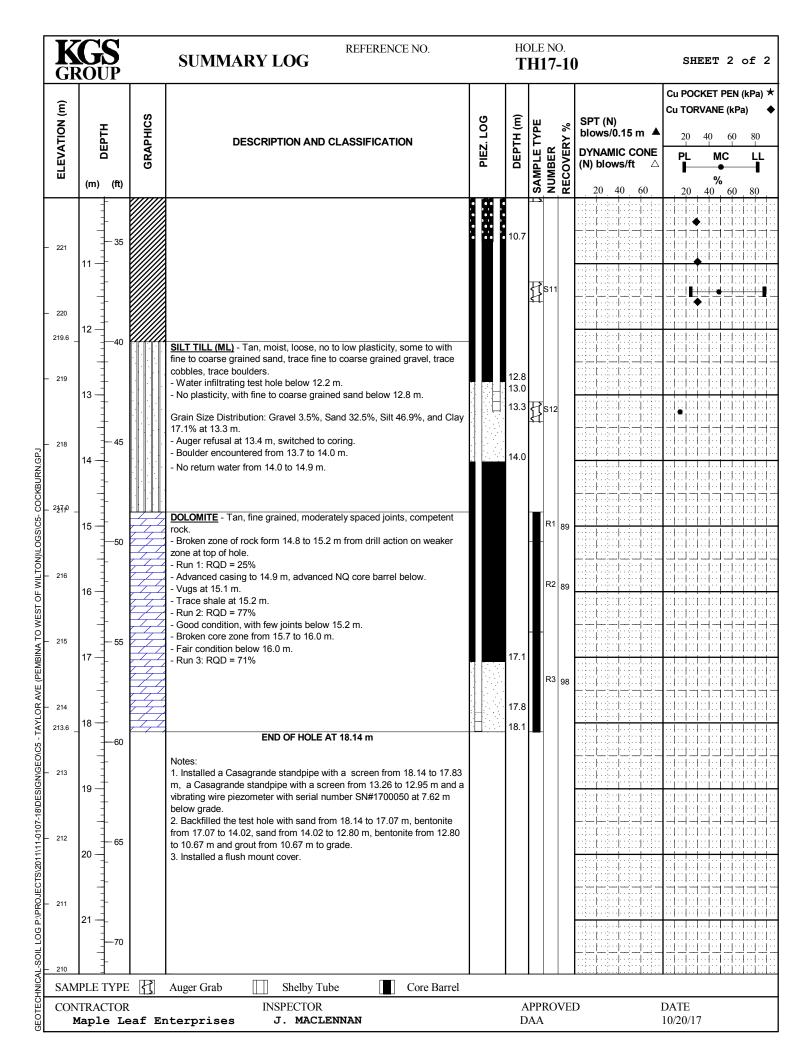


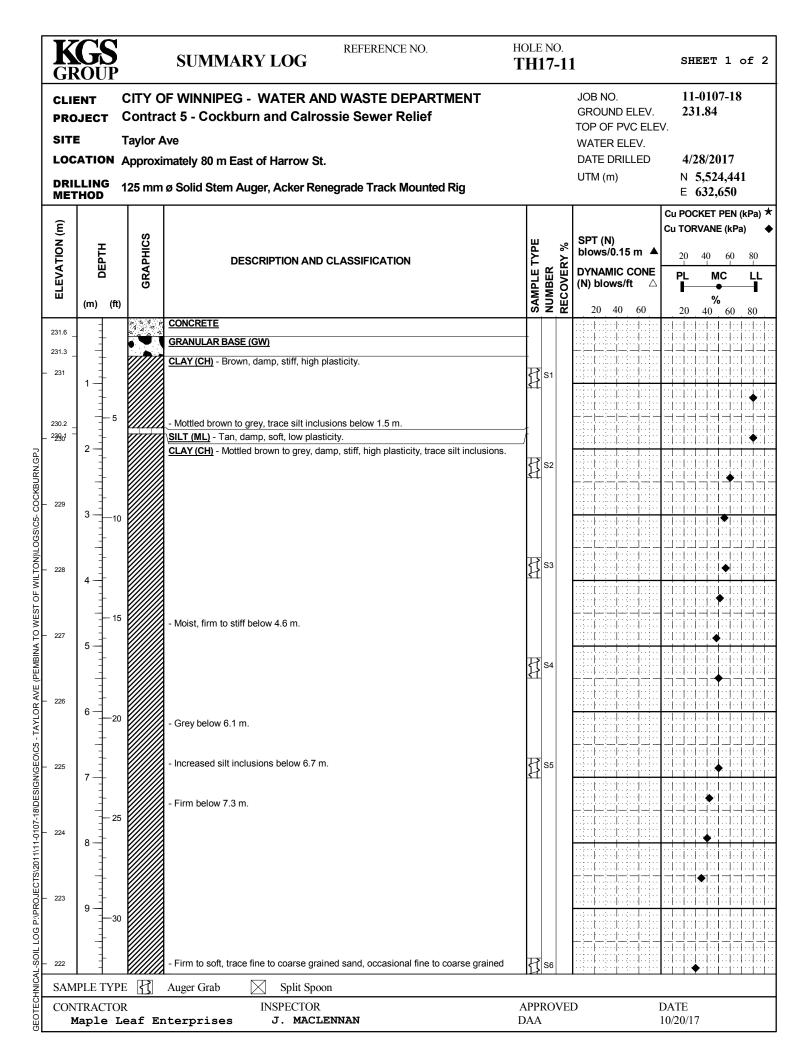


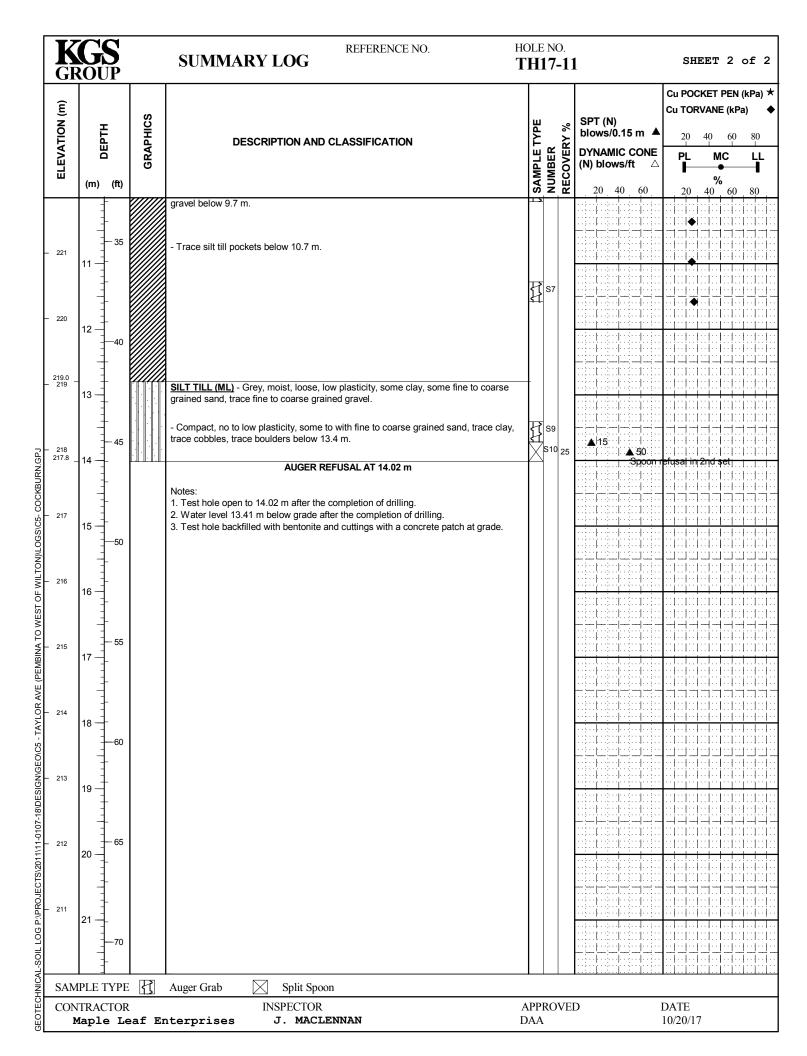

	K	G	S		SUMMARY LOG REFERENCE NO.			DLE NO. H17-0	6	SHEET 1 of 2
•	CLIE		(_	F WINNIPEG - WATER AND WASTE DEPARTME ct 5 - Cockburn and Calrossie Sewer Relief	NT			JOB NO. GROUND ELEV. TOP OF PVC ELE	11-0107-18 232.14
	LOCATION West of DRILLING METHOD					l Drill Rig	3		WATER ELEV. DATE DRILLED UTM (m)	5/2/2017 N 5,524,316 E 632,420
•	ELEVATION (m)	(B)	i i (ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m DYNAMIC CONE (N) blows/ft 20 40 60	Cu POCKET PEN (kPa) ★ Cu TORVANE (kPa) ◆ 20 40 60 80 PL MC LL % 20 40 60 80
Ī	- 2 33 21	=		2 4 4 9	\(\alpha\seta\)	/82 83				
	231.9 = 231.8		-		CONCRETE GRANULAR BASE (GW)					
	251.0		-		CLAY (CH) - Brown, damp, stiff, high plasticity.	88 88				
-	- 231	1 -	- - -5		- Mottled brown to grey, trace silt inclusions.	333333333 33333333333		\$1		
COCKBURN.GPJ	- 230	2	-			8888888 88888888		\$2 \$2		
WEST OF WILTON)\LOGS\C5- COCKBURN GPJ	- 229	3 - 1	—10 - -		- Moist below 3.4 m.			F3 83		
	- 228 - 227	5 —	- 15 - -		- Unconfined Compressive Strength was measured to be 102 kPa at 4.9 m.			S4 ₉₆		
35 - TAYLOR AVE (PE	- 226	6 1 1	- - 20 -		- Unconfined Compressive Strength was measured to be 71 kPa at 6.4	VW.	6.1 6.2	S6 100		
8\DESIGN\GEO\C	- 225	7-	-		m Grey below 6.7 m Firm below 7.3 m.	888888888888888888888888888888888888888	7.6	\$7 \$1		
\$\2011\111-0107-1	- 224	8 —	25 -		- Shelby tube pushed at 7.6 m had 0% recovery.		7.0	S8 ₁₀₀		
GEOTECHNICAL-SOIL LOG PAPROJECTS/2011/11-0107-18/DES/GN/GEO/C5 - TAYLOR AVE (PEMBINA TO	- 223	9	- - -30 -		- Trace fine to coarse grained sand 9.1 m.			\$9 \$10		
NICA	SAM	PLE T	YPF		Auger Grab Shelby Tube Split Spoon			Core B	arrel	
GEOTECH	CON	TRAC	TOR		INSPECTOR J. MACLENNAN			PPROVE AA	ED 1	DATE 10/20/17

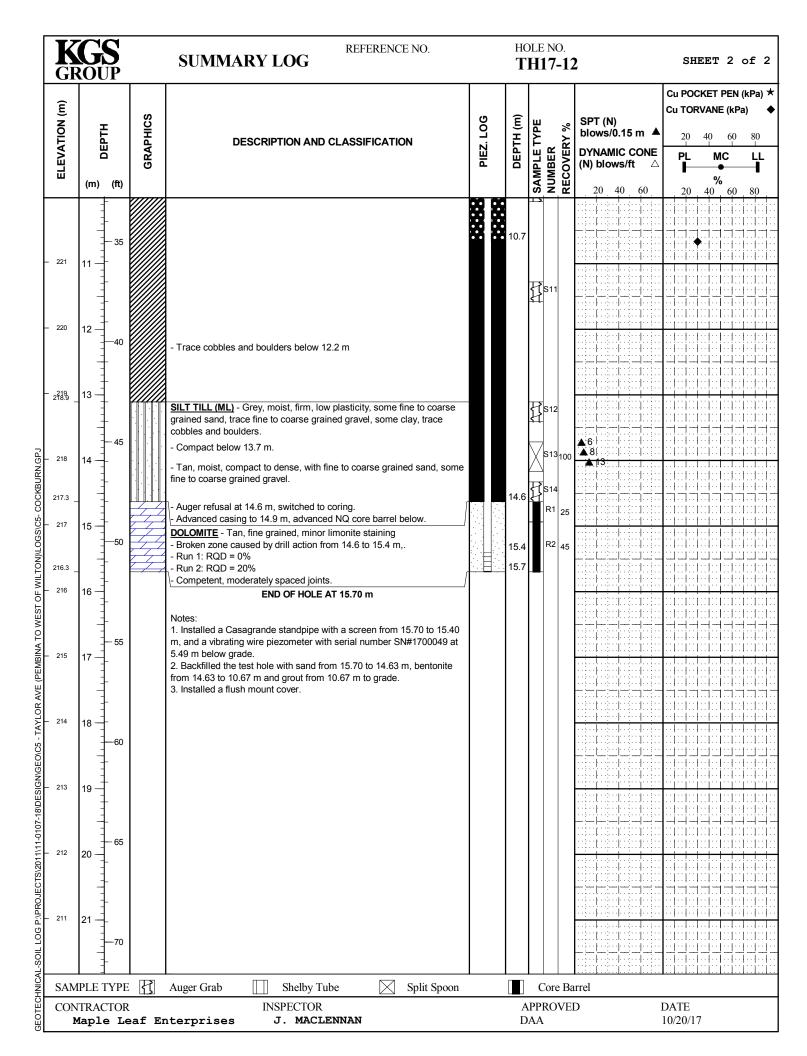


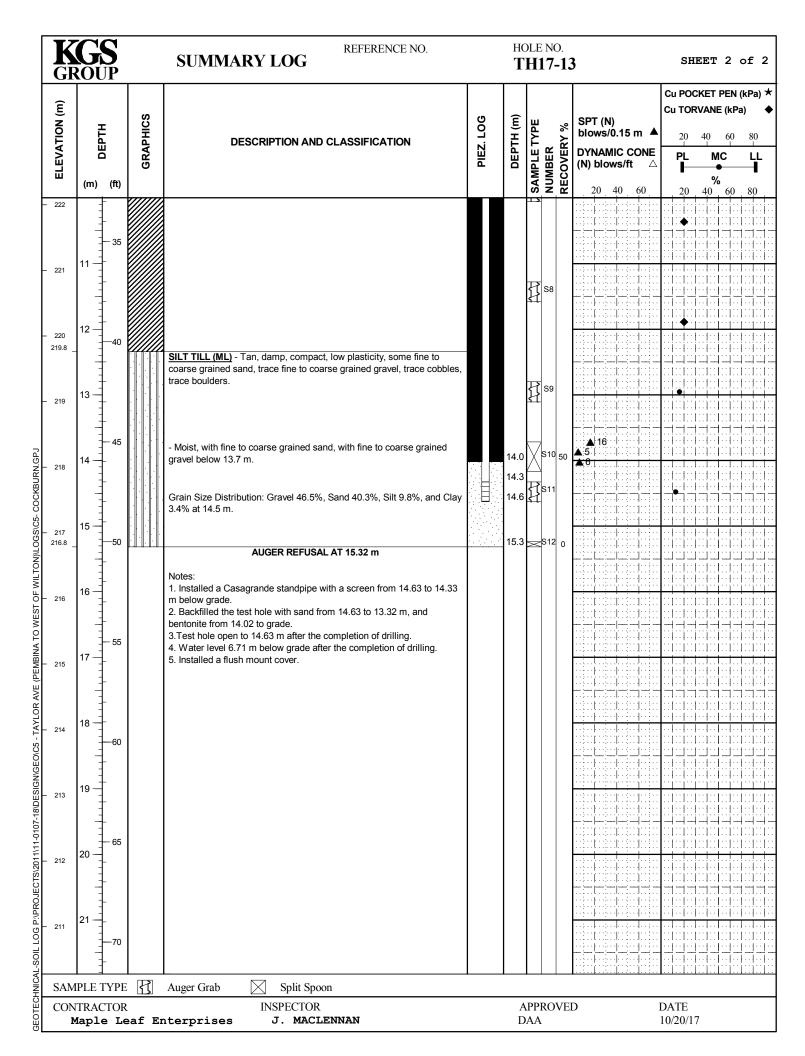


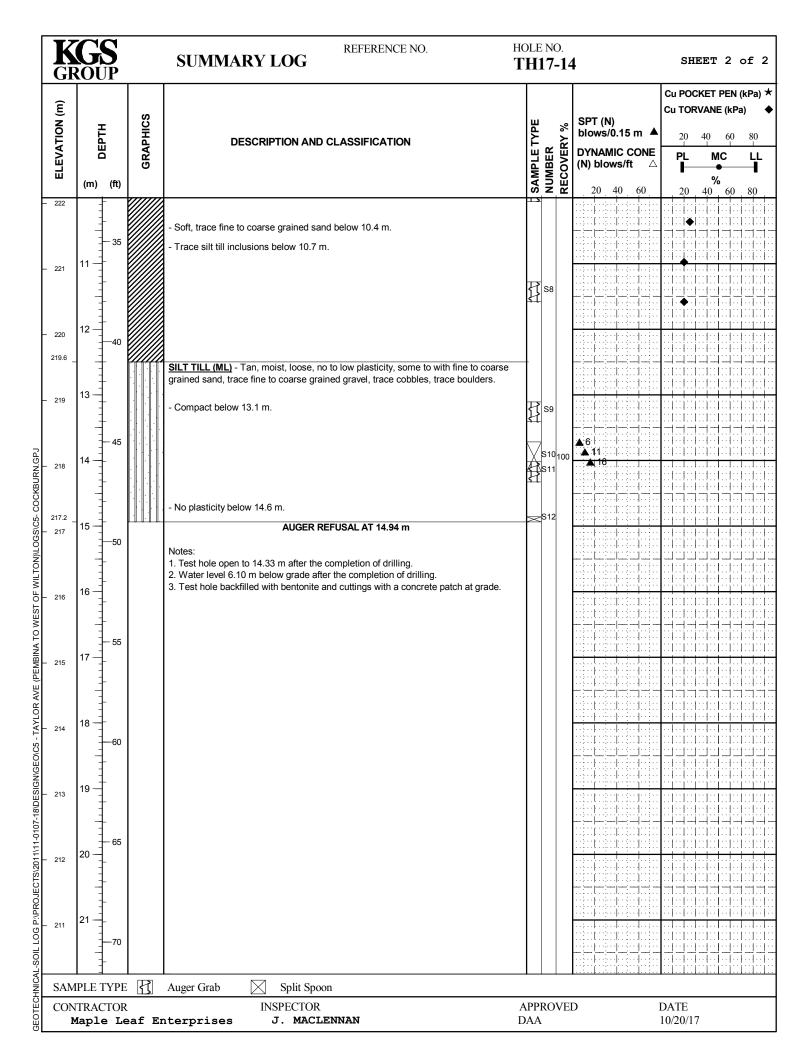


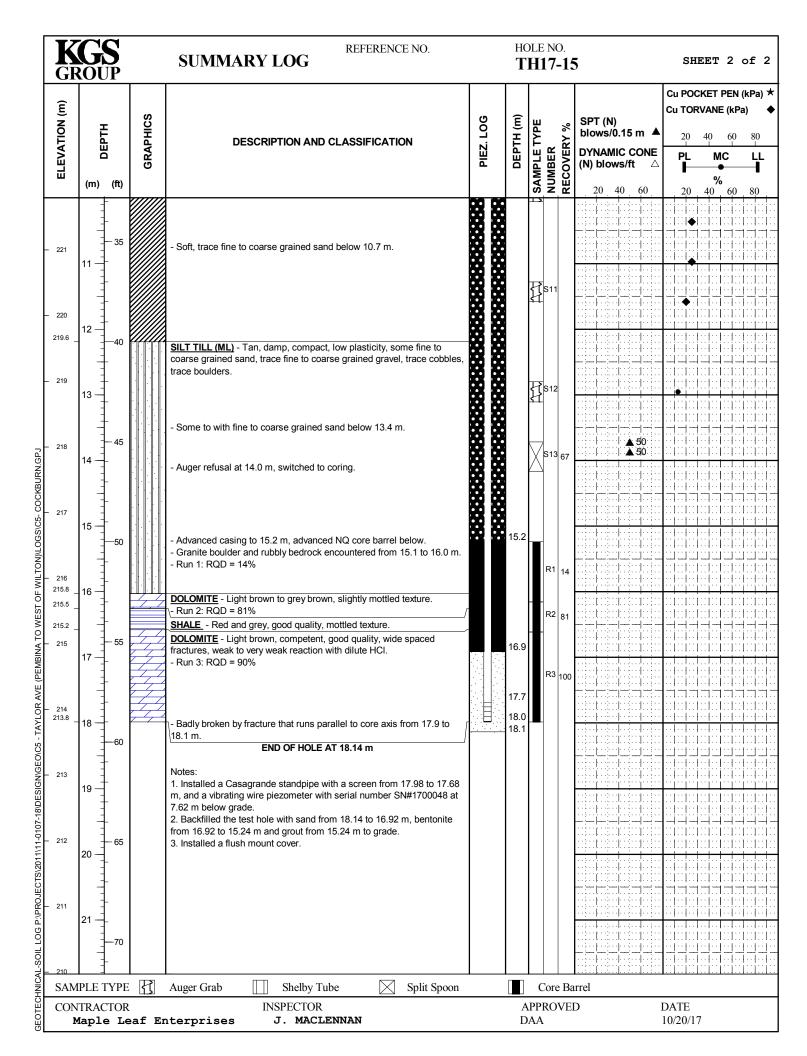


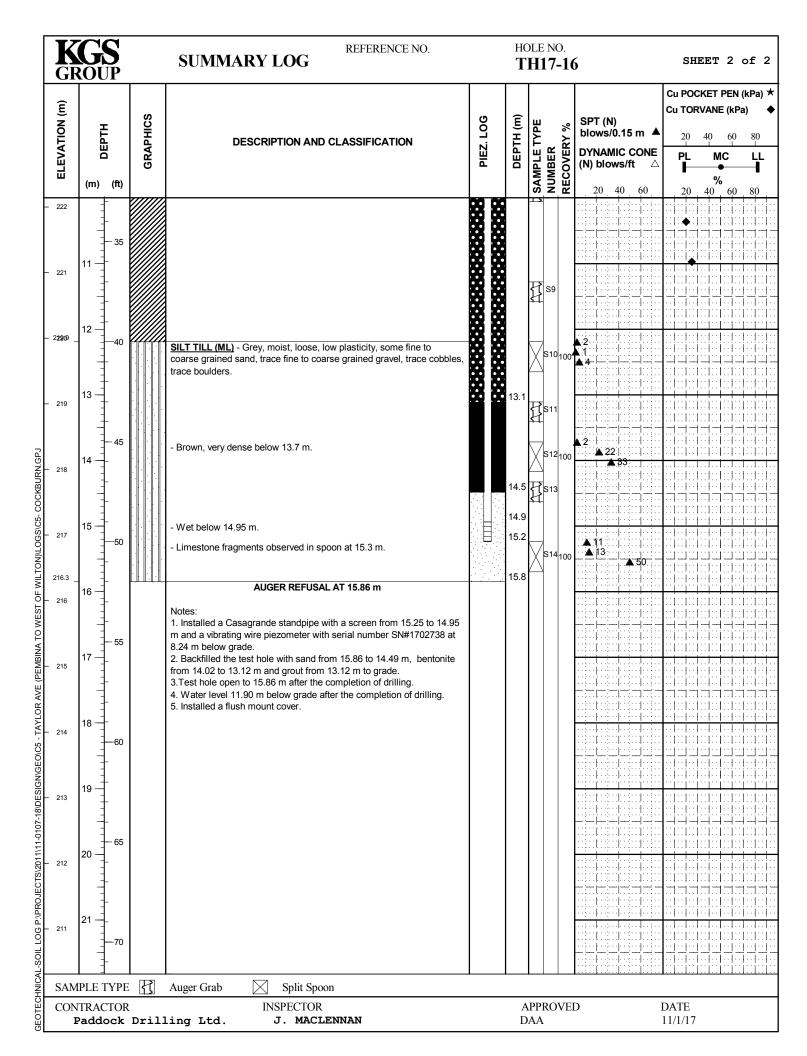

GROUP CLIENT PROJECT			CITY O	JOB NO	ND E			11-0107-18 232.12						
DRIL	ATIOI LING	N V		Ave Harrow St. ø Solid Stem Auger, B54X Truck Mounted Drill Rig			TOP OF WATEF DATE D UTM (n	R ELE DRILI	ΞV.		N 5	/2017 5,524, 532,53	,380)
ELEVATION (m)	ОЕРТН		GRAPHICS	DESCRIPTION AND CLASSIFICATION	AMPLE TYPE	NUMBER RECOVERY %	SPT (N blows/ DYNAM (N) blow	0.15 IIC C	ONE	Cu I	POCH	KET PE	EN (I (kPa)	
	(m)	(ft)		\ASPHALT	\ <u>\</u> \	Z Z	20	40	60	1	20		60	80
28220 Z	1		440	CONCRETE							. :: :		.	
231.7	1			GRANULAR BASE (GW)					1		111	441		44
	-			CLAY (CH) - Black, moist, high plasticity, stiff, some organics, trace fine to coarse		S1		4.131	. J	[[1. II. 1. 1.		1.11	[].[] /
231.1	1-			grained sand.				1	1	H	++		*	
231	‡		$ \cdot \cdot $	SILT (ML) - Tan, damp, soft, low plasticity.	- }}	S2		4	.	[]	1.4.		1.4	
230.6	- 1	- 5	<i>,,,,,,,</i>	CLAY (CH) - Mottled brown to grey, damp, stiff, high plasticity, trace silt inclusions.	4			- :-						\dashv
	4			CLAT (CIT) - Mottled brown to grey, damp, still, high plasticity, trace sit inclusions.				4.4	4		-	1.1.		
230	2-1				!	S3								
229	3 - 1	-10		- Moist below 3.1 m.		S4								
228	4-1	- 15		- Firm below 4.3 m.	\$1							→		
227	5			- Grey below 5.2 m.	}	S5						* 1		
226	6 - 7 - 7 - 7 - 7	-20				S6								
224	8 —	- 25		- Trace fine to coarse grained sand, trace silt pockets below 7.6 m.	<u> </u>	S7					• • • • • • • • • • • • • • • • • • •			
223	9 - 1 - 1 - 1 - 1 - 1 - 1	-30			· ·	S8								
SAMI	PLE T	YPE		Auger Grab Split Spoon	, 10			•	•					
		ГОБ		INSPECTOR	ΔPP	ROVE	D			DAT				

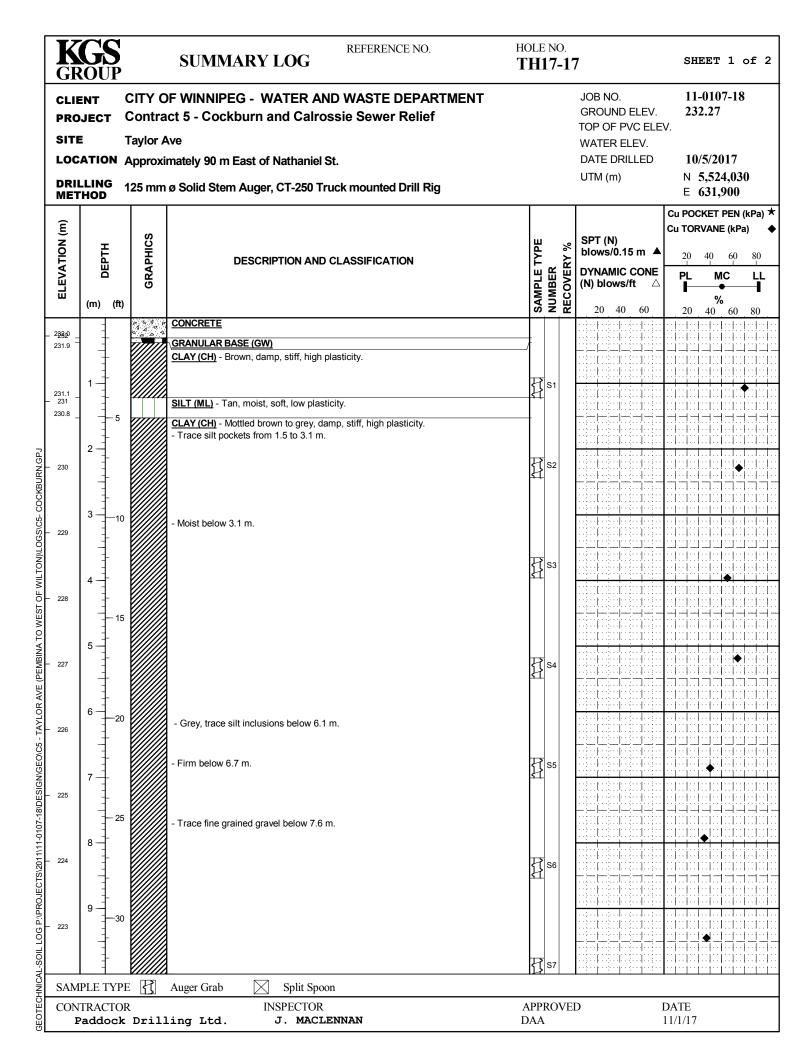


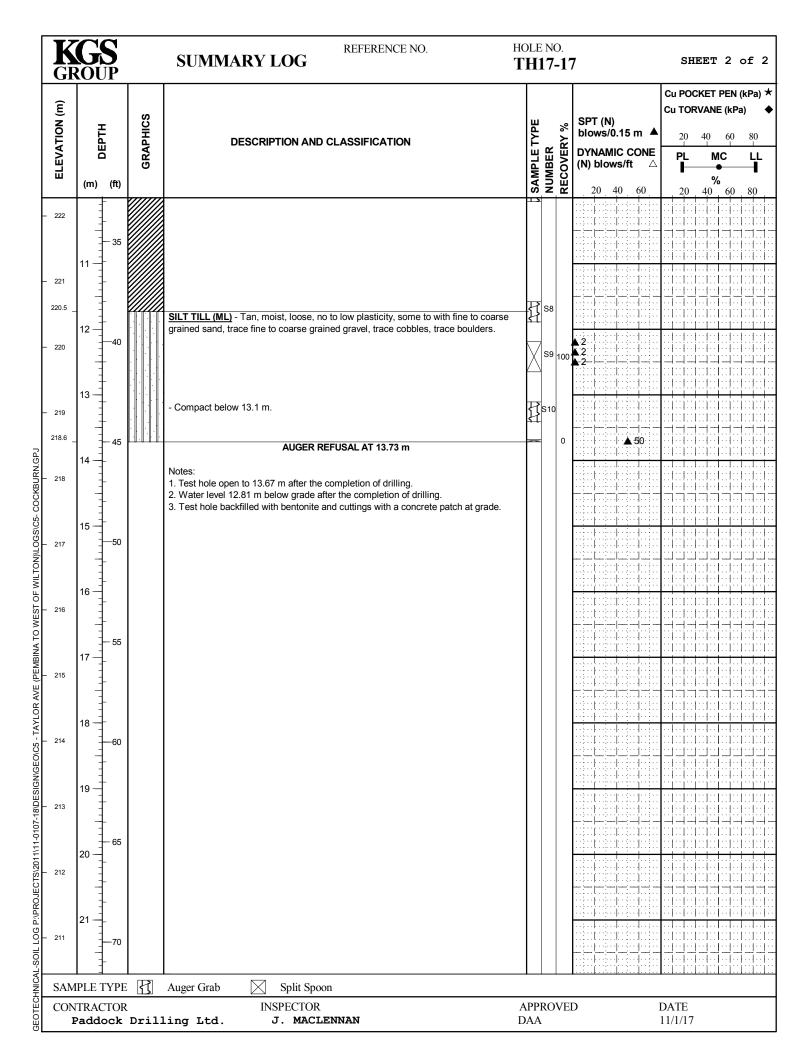



SITE	JECT	CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT Contract 5 - Cockburn and Calrossie Sewer Relief Taylor Ave West of Stafford St.							JOB NO. GROUND ELEV. TOP OF PVC ELE' WATER ELEV. DATE DRILLED UTM (m)				4/26/2017				
	LLING HOD	125 mm ø Solid Stem Auger, and NQ coring, B40X Truck Mounted Drill Rig											N 5,524,462 E 632,688				
ELEVATION (m)	(3)	(ft)	GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DEPTH (m)	SAMPLE TYPE	NUMBER RECOVERY %	DYN (N) I	(N) ws/0.15 IAMIC (blows/f	CONE	Cu 1	20 4	M(● %	(kPa		→
231.9 -		Š	> 4 4 2	ASPHALT	20 23			<u> </u>				:: ::	: :	10	00	80	-
231.6 <u>=</u> 231.6			inin	CONCRETE GRANULAR BASE (GW)	183 18												다. 그
_01.0	‡			CLAY (CH) - Brown, damp, stiff, high plasticity.			₽?	S1				[::j::	Į::İ:	gri:		edi.	1.
231	1 1				13 13								<u> :: :</u>	44			1:
					89 89							l::i::	<u>jaja</u>	ii.ii		•	į
	‡	5			83 83				<u>.</u>	ili		 -	11. 1-1 -	. l l . - ·	I I	!. -	.! H
230.2]				88 8								-				Ì
230	2 —			SILT (ML) - Tan, moist, soft.	22 23								1	1			÷
					88 88		}	S2								::::::	1
	=				88 88				;			i	ini	111		ıi.:	j
229.1]		,,,,,,	OLAV (OLD MAIN ALL MA	88 88								11.			1111	1.
229	3 -	10		<u>CLAY (CH)</u> - Mottled brown to grey, damp, stiff, high plasticity, trace silt inclusions.	88 8								Title	1			<u>†</u>
	+				88 88								11.			. 1 - 1	: . : :
]						ĮĮ,	63					1::1:				1:
228	4 -				22 53		}	33					<u> -</u>	17		<u> </u>	#
	1				88 88											1111	1:
		15			88 8											ı	ļ
								S4 100					1			- : : :	1
227	5 🚽			- Unconfined Compressive Strength was measured to be 81 kPa at 4.9 m									 			 .	+
				- Firm below 5.2 m.	82 83	5.5	{}	S5									·
	十				A 44	I 5.6						laja	ini:	ii:			į
226					88 88				. .				. -			! . -	.
220	6 —	20		- Grey, moist below 6.1 m.	89 89		Ш						<u> .</u>	1		[.	Ţ
	1			- Water infiltrating test hole below 6.1 m.	88			S6 ₁₀₀]]::]:				i
	1							0.7					1::1:				1
225	7						}	S7					•	11		ښن	ļ
	1												1::1:			::1:	1
		25			80 8				-:-:		44-	-	-		-	<u> </u>	į
		23			88 88			S8 ₁₀₀					1		[1
224	8 📑			- Unconfined Compressive Strength was measured to be 84 kPa at 7.9	88 8			100	;				1				+
				m.	22 23		}	S9	;)			.]
					88 88		5.1		;				1				1
223	9 —				89 89							:: ::	<u> ::: :</u>	<u> </u>		<u>.:: :</u>	ij
		30		- Soft to firm, trace fine to coarse grained sand below 9.1 m.									1I. 1I				4
	}			-							441		14.	44			j.
							 } }	210					** *				1:
222					SA S	<u> </u>	М					1	11.	1.1.		1-	1
SAM	PLE TY	PE	<u> </u>	Auger Grab Shelby Tube Split Spoon				ore Ba									_
00-	TRACT	0.5		INSPECTOR			DDT	ROVE				DAT	T				


	K	G	S IP		SUMMARY LOG REFERENCE NO.			LE NO. H 17-1 3	3	SE	EET	1 o	f 2	-
	CLII	ENT JEC		_	OF WINNIPEG - WATER AND WASTE DEPARTM act 5 - Cockburn and Calrossie Sewer Relief	JOB NO. GROUND ELEV. TOP OF PVC ELE	23	1-0107 32.10	'-18					
	SITI	E	7	Taylor A	Ave				WATER ELEV.					
	LOC	ATIC)N E	East of	Stafford St.				DATE DRILLED		25/20			
		HOD		25 mm	ø Solid Stem Auger, B40X Truck Mounted Drill Rig				UTM (m)	E	5,524 632,7	54		
	ELEVATION (m)		<u> </u>	GRAPHICS		907	DEPTH (m)	SAMPLE TYPE NUMBER RECOVERY %	SPT (N) blows/0.15 m	Cu PO	RVANE	(kPa)	-	•
	EVAT	1000	7	RAP	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	EPT	LE T ER VER)	DYNAMIC CONE	P <u>L</u>	M		L <u>L</u>	-
	==	(m)	(ft)	"		" '	_	AMP UMB ECO	(N) blows/ft △		• %		-1	
	- 2 332 9 _	(''')	(11)	p 4 0 p	CONCRETE			SZZ	20 40 60	20	40	60	80	-
	231:9 = 231.9	-	-		GRANULAR FILL (GW)									
	231.3	-			CLAY (CH) - Brown, damp, stiff, high plasticity.						1	44- :::::::		-
		1 -	_		SILT (ML) - Tan, moist, soft, low plasticity Some clay from 0.8 to 1.1 m.			F7 81			1::1::1		11:11:	
	– 231	-			- Water infiltrating test hole from granular base material.			S1						
		-	 5								1-1-1			-
_	230.3	2 —	_		CLAY (CH) - Mottled brown to grey, damp, stiff, high plasticity, trace								<u>:i::i:</u>	
N.GP	- 230	-	-		silt inclusions.		ŀ	S2 S2						
KBUF		-					ľ	<u> </u>				1		_
- COC		3 —	-								 • • • •		.11.	
3S/C5	- 229		 10		- Moist, firm below 3.1 m.						1			
V)/LOC		-										441		-
WILTON)/LOGS			_				ļ	S3 S3			• •		- -	
OF W	- 228	-	_											
VEST		-	— 15											-
4 TO V		5 —	_											
(PEMBINA TC	- 227		_				-	\$34						
E (PE		-	_				1				1			-
LOR AV		-	_											
AYLC	- 226	6 —	 20		- Grey below 6.1 m.						111		<u> </u>	
- <u>5</u> 2\		-	_											_
NGEO		7 —	_				Ī	∏ S5						
SIGN	- 225	' -											11:11:	
-18\DE		=	— 25											_
-0107		-			- Increased silt inclusions below 7.6 m.									
11/11	- 224	8 —	_					13		:: :: ::				
:TS/20		-	_					₹ S6			10101 10101			_
SOJEC			-										11:1:	
P:PF	- 223	9 —	-30		- Occasional fine to coarse grained gravel below 9.1 m.								1.1.	
FOG-			-								133			-
L-SOIL		=	-		- Soft below 9.8 m.		-	} s7						
NICA INICA	SAM	PLE 7	ГҮРЕ		Auger Grab Split Spoon			<u> </u>		*				-
TECH	CON	TRAC	CTOR	<u> </u>	INSPECTOR			PPROVE		DATE				-
	l M	fapl	e Le	eaf Er	nterprises J. MACLENNAN		\mathbf{D}	٩A		10/20/1	7			


	K	GROU	S JP			HOLE TH1		4	SH	EET 1	l of 2			
CLIENT			т	Contra	OF WINNIPEG - WATER AND WASTE DEPARTMENT act 5 - Cockburn and Calrossie Sewer Relief			JOB NO. GROUND ELEV. TOP OF PVC ELE	23	-0107- 2.09	18			
	SITE			aylor <i>A</i> Approxi	Ave mately 85 m East of Stafford St.			WATER ELEV. DATE DRILLED	4/2	25/201	7			
								UTM (m)	N 5,524,528 E 632,806					
		ELEVATION (m) DEPTH		GRAPHICS	DESCRIPTION AND CLASSIFICATION	гуре	% X8	SPT (N) blows/0.15 m 🔺		RVANE (I	PEN (kPa) ★ E (kPa) ◆			
	ELEVA	2	2	GRA		MPLE.	NUMBER RECOVERY %	DYNAMIC CONE (N) blows/ft △	PL.	MC	LL I			
		(m)	(ft)	SVIKOVA VIS	CONCRETE	SAI	N N	20 40 60	20	% 40 6	0 80			
ľ	- 231.9 _ 231.8 -	-	-		CONCRETE GRANULAR BASE (GW)									
	231.3	-	-		CLAY (CH) - Black, damp, stiff, high plasticity, some organics, trace fine to coarse grained sand.									
		1 -	-		SILT (ML) - Tan, moist, soft, low plasticity.		S1							
	- 231 230.9 _	-	-		CLAY (CH) - Brown. damp, stiff, high plasticity.						 ♦ .			
		-	- 5		- Trace silt inclusions below 1.5 m.									
.FJ	- 230	2 -												
JRN.G		-	-		- Mottled brown to grey below 2.3 m.	}	S2							
CKBI		-	-							 -≸	 			
C5- C	- 229	3 —	-10											
.0GS\		-	-											
TON)/L		-	-		- Firm below 3.7 m.	<u> </u>	S3				:: :: :: :: :: 			
F WIL	- 228	4 -	-			Z.T.								
EST 0		-	15							:: \ :: -	:: :: :: :: 			
TO W		=	"							11 11 11 11 ∳ 1 11				
/BINA	- 227	5 —	-			IP.	24							
E (PEN		-	-			1	54							
R AVE		-	-								:: :: :: :: :: 			
FAYLO	- 226	6 —	20											
50\c		-							44:					
N/GEC		7 –			- Grey, moist below 6.7 m.	<u>}</u>	S5			 				
ESIG	- 225	-	-							:: :: :: ♦	:: :: :: :: :: 			
)7-18\[-	<u> </u>		- Soft to firm below 7.6 m.				- - - :: :: ::	— — 	- - - - :: :: :: ::			
11-010	- 224	8 —	-								:: :: :: :: 			
\2011\		-	-			<u> </u>	S6				1::1::1::1::1::1			
JECTS		-	-			2.1								
:\PRO	- 223	9 —	30											
-0G P		-	- 00								::: ::: ::: 			
SOIL		=	-			₹.	57							
GEOTECHNICAL-SOIL LOG PRPOJECTS\2011\11-0107-18\DESIGN\GEO\C5 - TAYLOR AVE (PEMBINA TO WEST OF WILTON)\LOGS\C5- COCKBURN.GPJ	SAM	PLE	L FYPF		Auger Grab Split Spoon	_\				<u> </u>				
TECHI	CON	TRAG	CTOR		INSPECTOR	APPR	OVE		DATE					
GEO	M	ſapl	e Le	eaf Er	nterprises J. MACLENNAN	DAA			10/20/1	7				




K	Cor	S JP		SUMMARY LOG REFERENCE NO.			DLE NO H17 -		5		SHE	ET :	1 0:	f 2				
PRO	CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT CONTRACT 5 - Cockburn and Calrossie Sewer Relief Taylor Ave								JOB NO. GROUND ELEV TOP OF PVC EL		11-0107-18 231.79 V.							
LOC	ATIO	ON V	Ventwo		l Drill Rig	q			WATER ELEV. DATE DRILLED UTM (m)		4/24 N 5, E 6.	,524,	,580					
ELEVATION (m)	ОЕРТН				(E) HLd.		GRAPHICS	DESCRIPTION AND CLASSIFICATION	PIEZ. LOG	DЕРТН (m)	гуре	% A3	SPT (N) blows/0.15 m	Cu Cu	POCK TORV	ET PI	EN (ki	Pa) ≯
ELEVA	(m)	(ft)	GRA		PIEZ	DEP	SAMPLE TYPE NUMBER	RECOVER	DYNAMIC CONE (N) blows/ft 2	` [^]	PL	MC % 40		LL - ¶				
231.6 _ 231.5 ⁻				CONCRETE GRANULAR FILL (GW)	88 88				20 40 00		1 1		1::1:	1 1				
231.1	-	-		CLAY FILL (CH) - Black, damp, stiff, high plasticity, some organics.	88													
- 289.b -	1 -	-		WOOD CLAY (CH) - Brown, damp, stiff, high plasticity, trace silt inclusions.			D _C				+++	1::1::	· · · · ·	+++				
	-	- - 5		M. W. albana and a same balance & 5			\$1 \$1				::::::: 	,,,. ::. :: -	Ŷ::i: ⊣	 				
- 230	2 -	-		- Mottled brown to grey below 1.5 m.									•					
	2	-		- 75 mm silt lens at 2.1 m.			\$\frac{1}{5}\$\$						T	.TT. : [:::[:				
229	-			- Firm to stiff below 2.5 m.			7.1											
3	3 —	—10									.	1	<u> -</u> -	-11-				
1000	-	-] 						
							₹3 s3					•						
		-			88							ii - -		: i : : i : : i : : i :				
20 – 227	-	— 15										1-1-		-11-				
	5 —			- Unconfined Compressive Strength was measured to be 88 kPa at 4.9 m.	88			100			1.1.	1	 	1				
	-	-		- Grey, moist, firm below 5.2 m.			\$55					∳i ∃						
226	6-	-										•	1::1:	:1::1:				
-	=	20		Library Francisco Communication Character was a second to be 90 LPD at 6.4	88		S6	100				 	. .					
225 25 – 225	=	-		- Unconfined Compressive Strength was measured to be 82 kPa at 6.4 m.			\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\											
	7 -	-					<u>₹1</u>					1::1:	1::1:					
	=	- - 25		Trace fire to engree grained and below 7.6 m		7.6					-		::: : 					
224	8 -	-		- Trace fine to coarse grained sand below 7.6 m.	88 88	7.8						, <u> </u>	<u> : : :</u>	: : : :				
11000	-	-					} \$8											
223		-									.1. .♦ : :: ::	1		.1.:1: : :: :				
	9 —	-30											1					
	=	-					S9	100		1:	-		1-1-	-				
222					* *		\$\frac{1}{5}\$10				. <u>' •</u>	1	1.:1:	1				
3	IPLE T			Auger Grab Shelby Tube Split Spoon INSPECTOR			Core PPRO			DAT	Œ.							
				nterprises J. MACLENNAN			AA	اند ب	v	10/2								

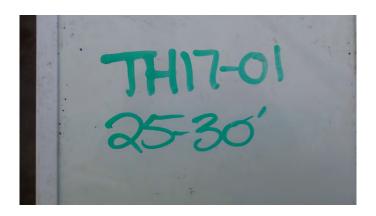
K	GROUP CLIENT PROJECT SITE		SUMMARY LOG	EE NO.)LE N H1 7		6				SHE	ET	1 of	E 2
PRO			CITY OF WINNIPEG - WATER AND WASTE DEPARTMENT Contract 5 - Cockburn and Calrossie Sewer Relief Taylor Ave						JOB NO. GROUND ELEV. TOP OF PVC ELEV. WATER ELEV.				11-0107-18 232.14		
LOC	ATION	Approxi	mately 40 m West of Nathaniel St.					DATE [LED		10/5			
DRI MET	LLING THOD	125 mm	ø Solid Stem Auger, CT-250 Truck mounted l	Orill Rig				UTM (n	UTM (m)			N 5,523,977 E 631,776			
ELEVATION (m)	ELEVATION (m)		DESCRIPTION AND CLASSIFICATION	NEZ. LOG	DEPTH (m)	SAMPLE TYPE	ECOVERY %	SPT (N blows/ DYNAM (N) blow	0.15 IIC C ws/ft	ONE	2 P	rorv.	ANE (60	Pa) ★ 80 LL
- 232	(www.	TOPSOIL - Black, damp, firm, trace roots, trace fine to c	oarse	X	SZ	ž <u>~</u>	20	40	60		20 4	40	60 8	80
- 232 231.8 _			grained sand. SILT (ML) - Tan, moist, soft, low plasticity.			₽s	1					 			
231.4	1 -1		CLAY (CH) - Brown, damp, stiff, high plasticity, trace silt	inclusions.		FFs	2							1	-
– 231			- Mottled brown to grey, moist, trace silt inclusions below	inclusions.	85865865555555555555555555555555555555	₹ s						 - 			↑ ::::::::::::::::::::::::::::::::::::
URN.GPJ - 530	2 -					₽s	3							1	
5- COCKB	3 — 1									1		 	 :: ♦	•1::1:: •1::1::	1
90\S90															
VILTON)	4-		Firm below 3.7 m.			₹ } s	4					:: ::	 	1::1::	
TO WEST OF WILTON)LOGS(CS-COCKBURNGPJ		5			-										
WBINA - 227	5 —		- Grey below 5.2 m.		8.2	∏s	5					 · · · ·		 	
R AVE (P						21						1	i ∲ i .		
OT - 226	6 - 2			88						1		 	 :: : -		T I . I I
\GEO\C5						∏s	6						 		
DESIGN - 225	7-											:: :: :: ::	 : :	1::1::	1::1:
1-0107-18	8-	5	- Silt till pocket, approximately 100 mm thick at 7.6 m Trace fine grained gravel below 7.6 m.	88		12.									
GEOTECHNICAL-SOIL LOG P./PROJECTS/2011/11-0107-18/DESIGN/GEO/C5 - TAYLOR AVE (PEMBINA TO SECTION OF CONTRACT OF CO				VW.	184	₹s						:: . :: : :: :: :: .			
JONAY: - 553	9 = 3	·	- Trace silt till pockets below 9.1 m.	88888888888888888888888888888888888888									 		
SOIL LOG	+		- Soft below 9.8 m.												
SAM	<u> </u>	_ <i>\/////</i> PE [₹]	Auger Grab Split Spoon	<u> </u>	<u> </u>	₹]s	°	1.15.16.15	1000	1	<u> </u>	<u> ∳ ··</u>	11	11	11.
E CON	TRACTO)R	INSPECTOR			PPRO	OVE	D			DAT				
일 1	Paddoc	k Dril	Ling Ltd. J. MACLENNAN		D	AA					11/1/	17			

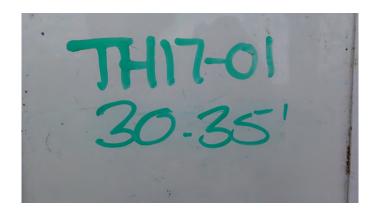
November 2017 KGS 11-0107-18

APPENDIX C PHOTOS

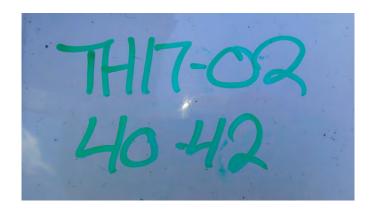
November 2017 KGS 11-0107-18

TH17-01



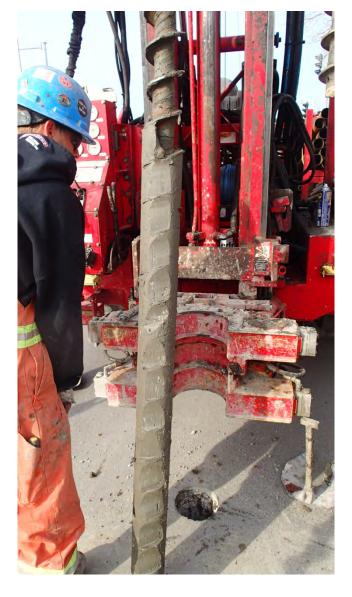


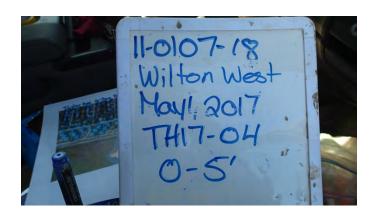
TH17-02

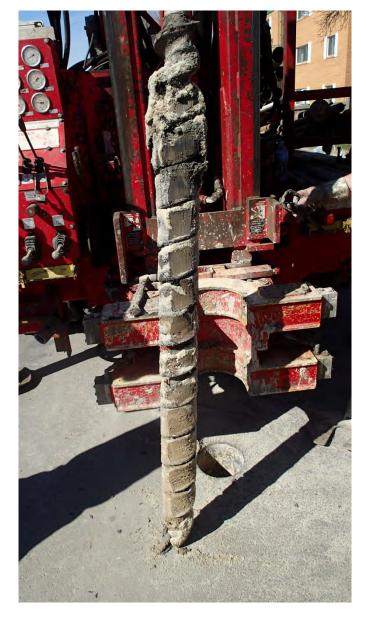


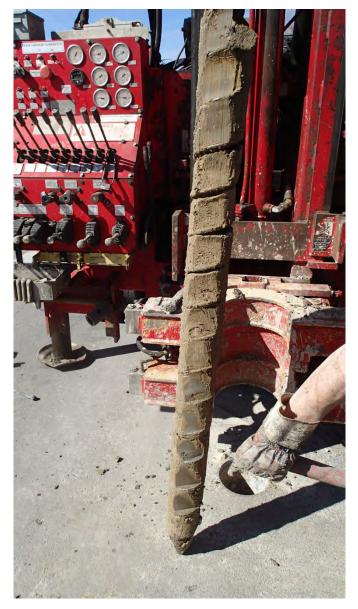



TH17-03

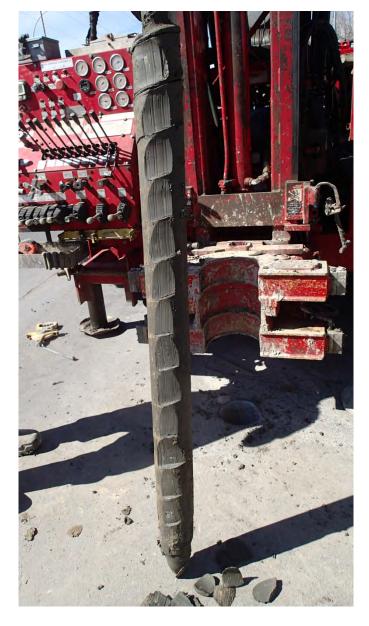



35-40

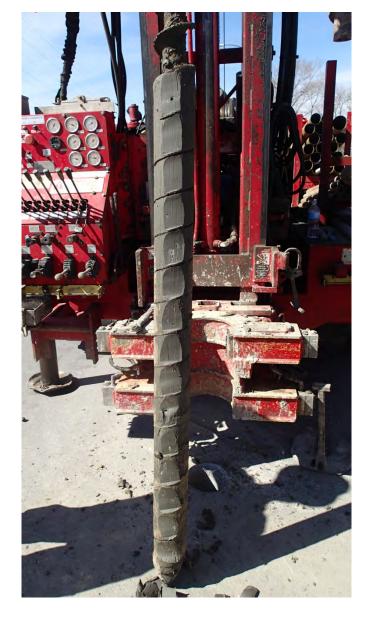


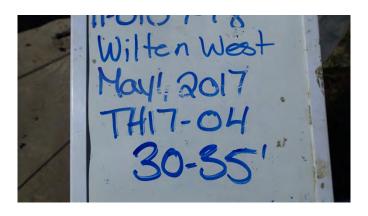


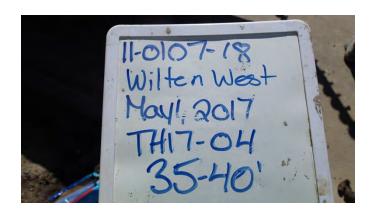
TH17-04

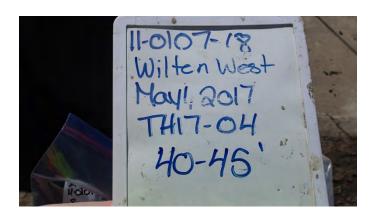


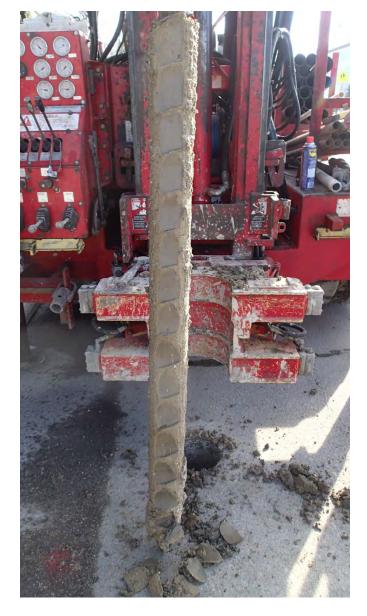




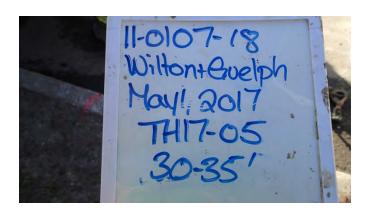


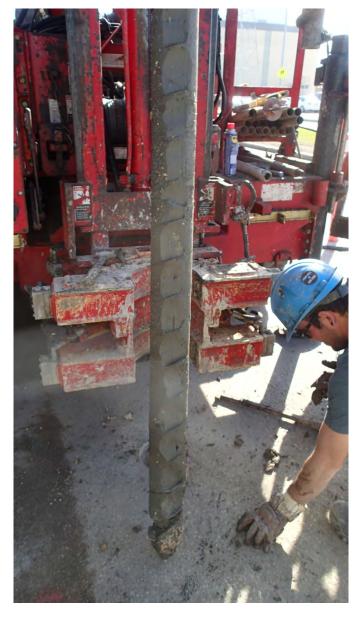




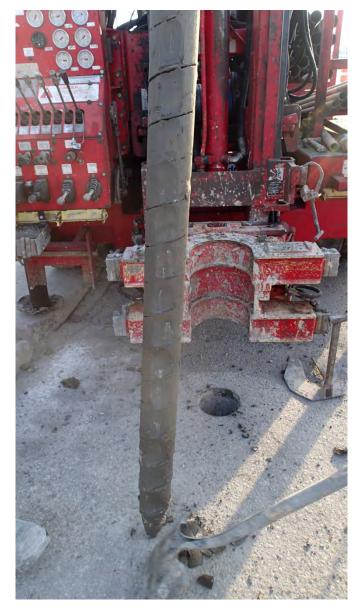


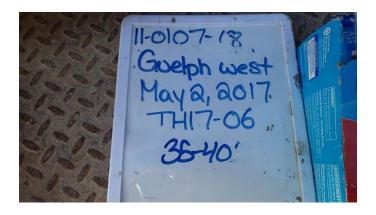
TH17-05

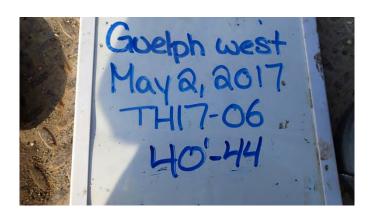


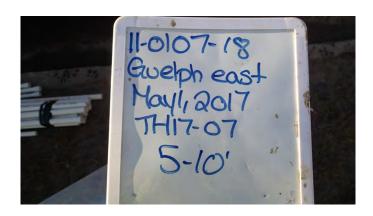


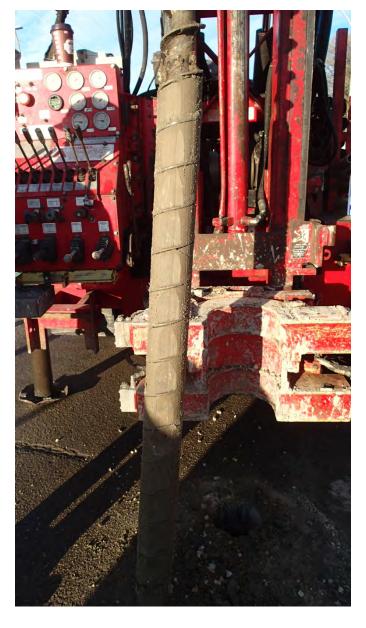
TH17-06

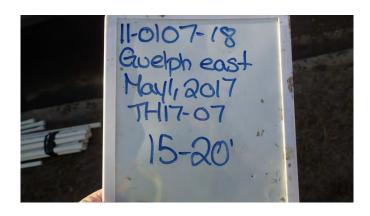


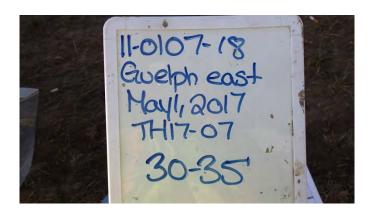


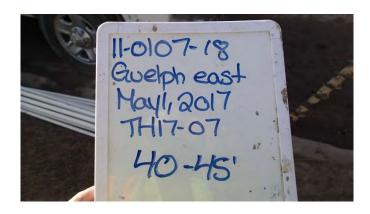


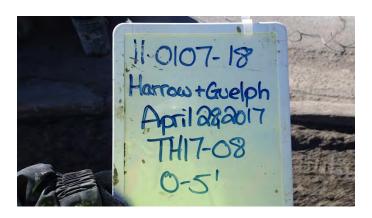




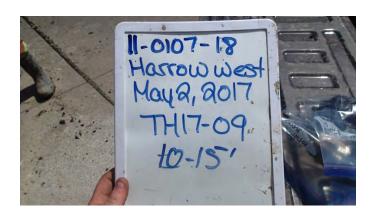


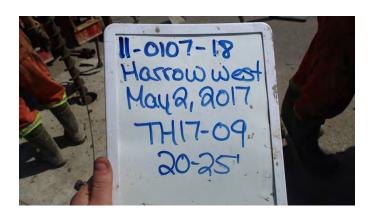


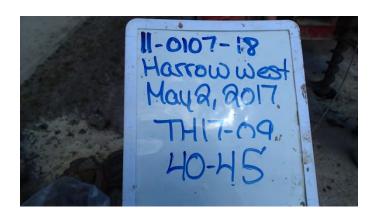


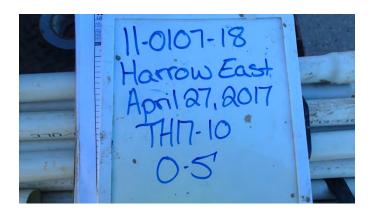


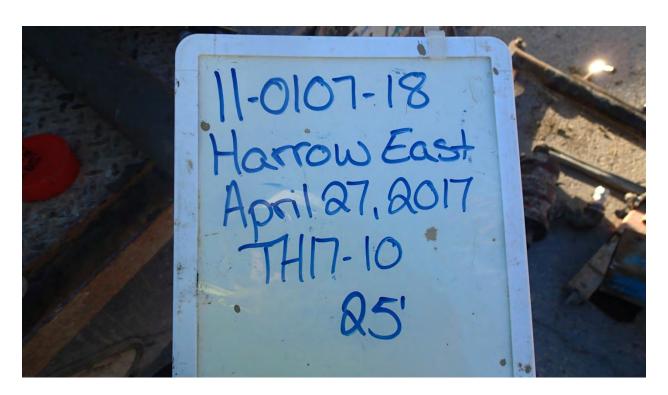


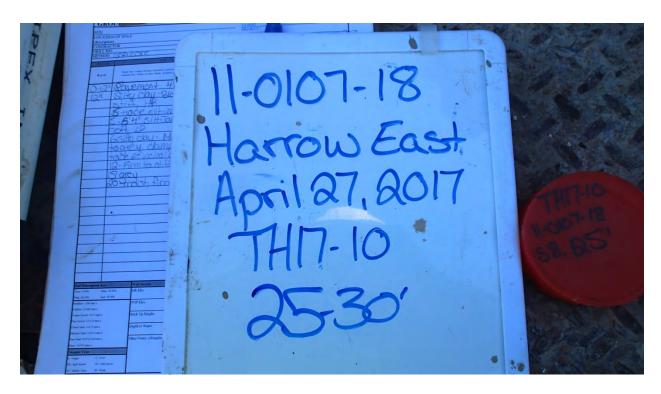


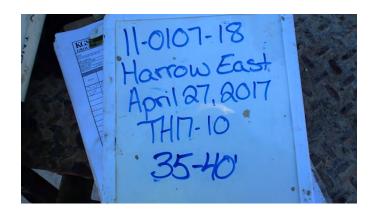






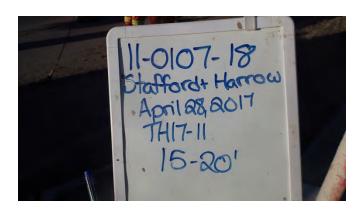


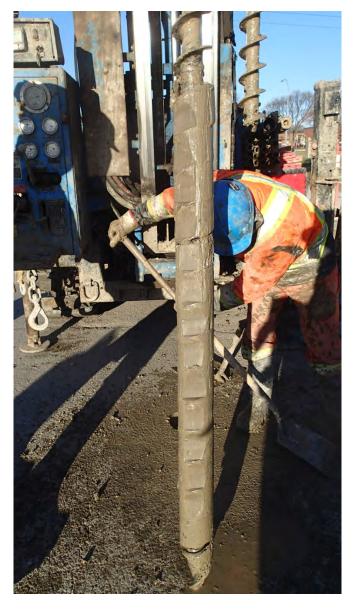


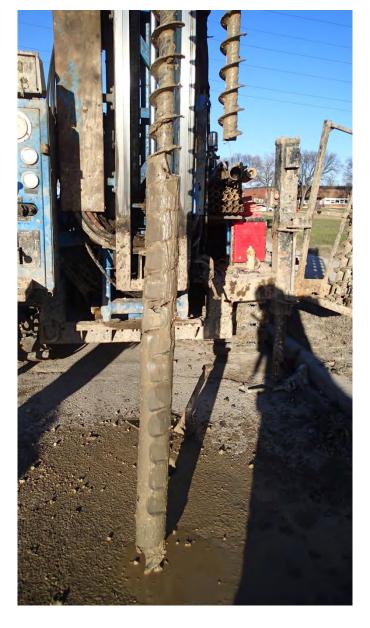


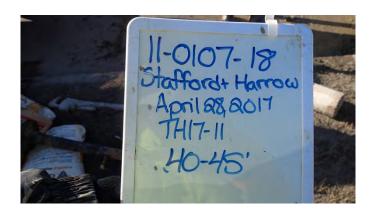


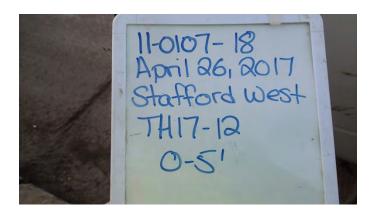
TH17-11





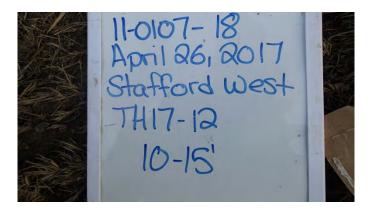


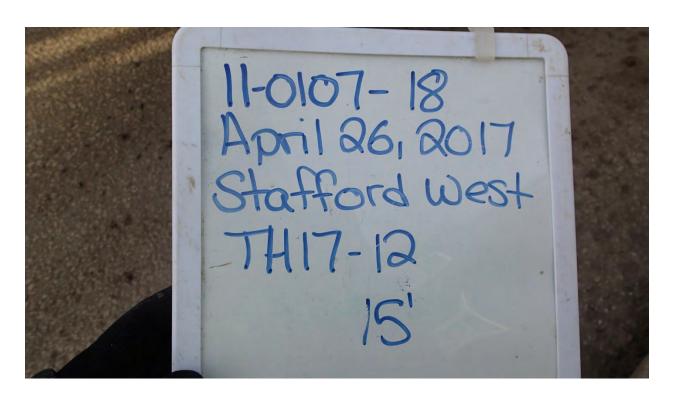


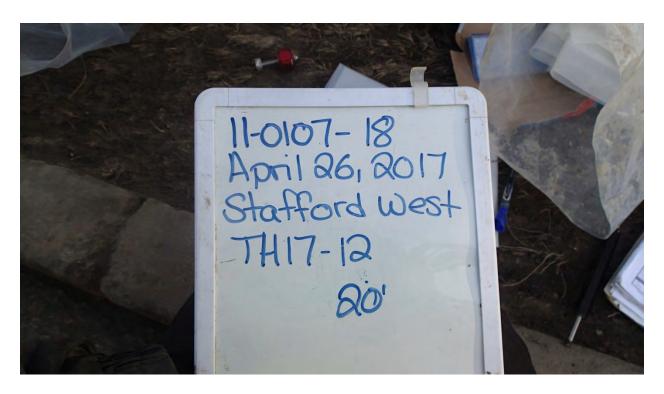


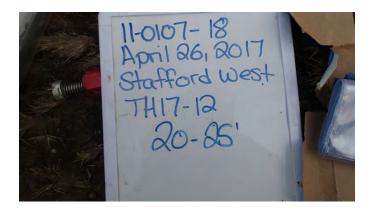
November 2017 KGS 11-0107-18

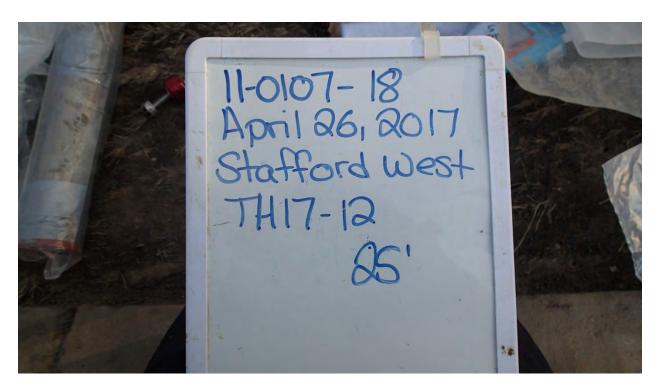
TH17-12

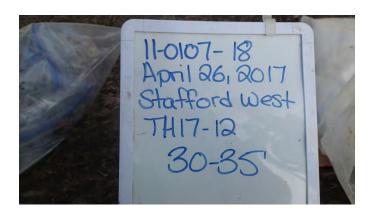


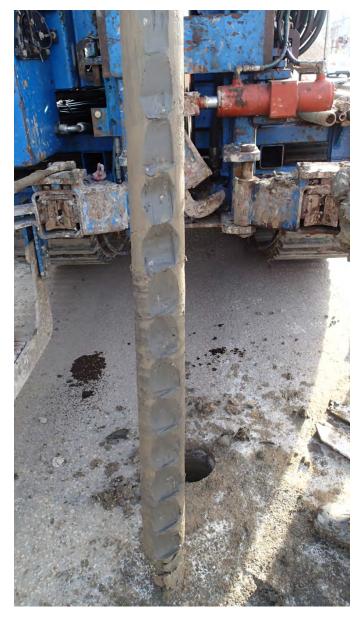




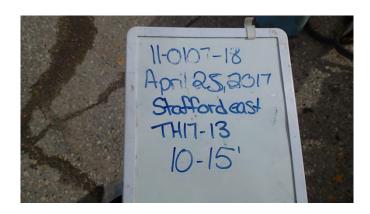


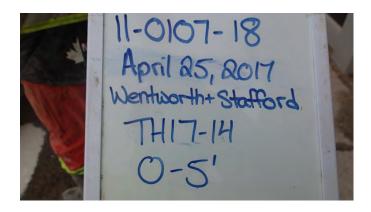


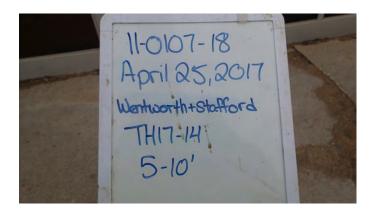






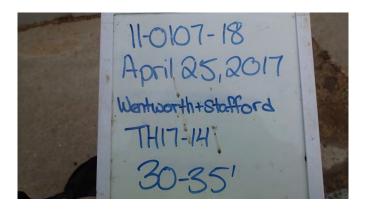

TH17-13

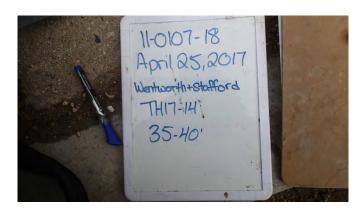


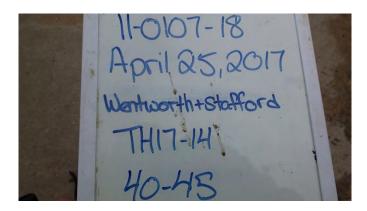


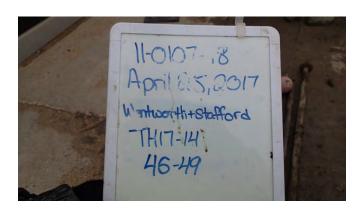
TH17-14

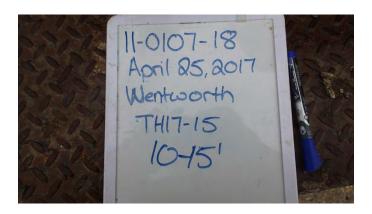


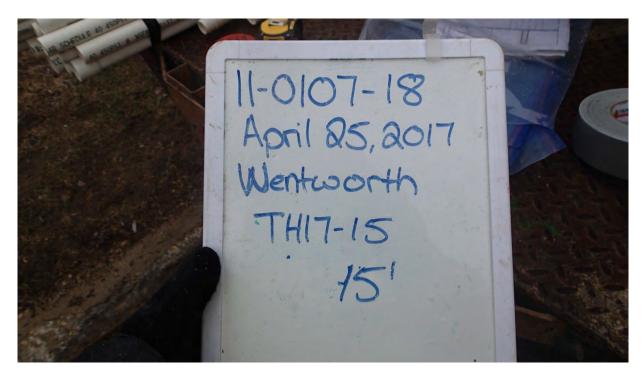




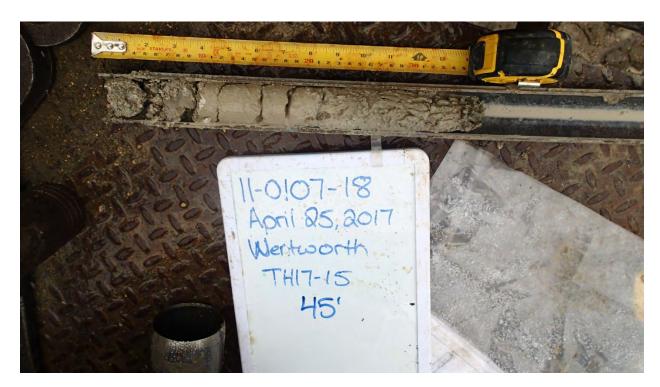


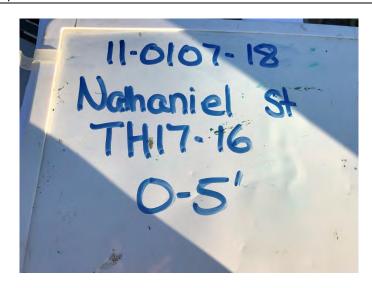


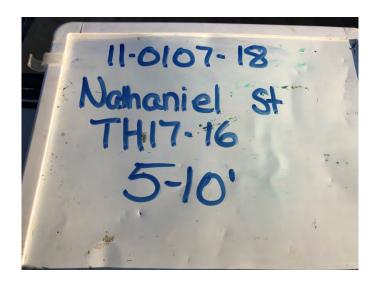

TH17-15



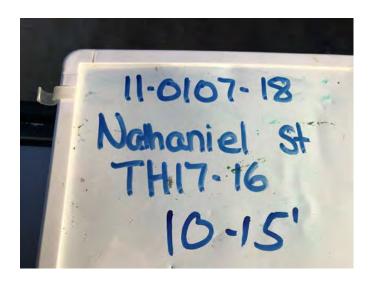






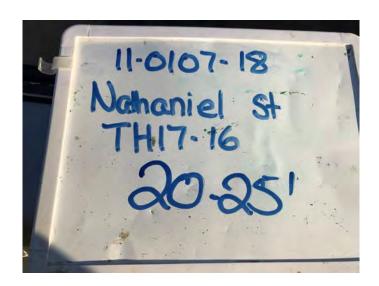


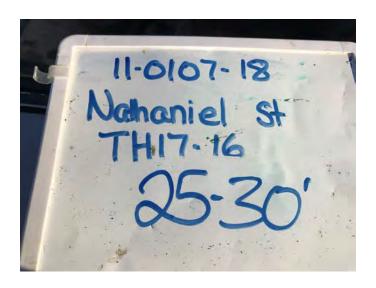

November 2017 KGS 11-0107-18

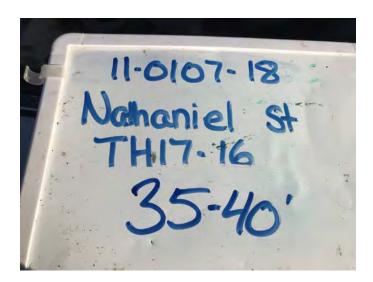

TH17-16

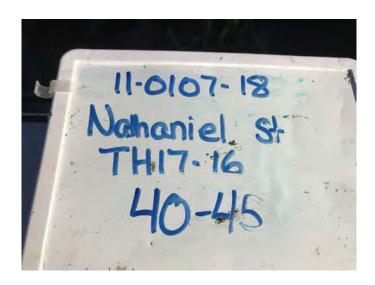


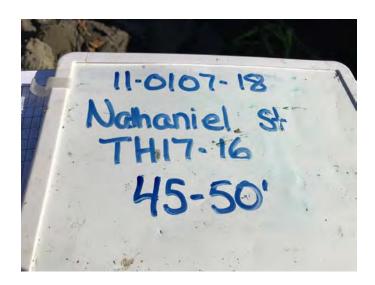


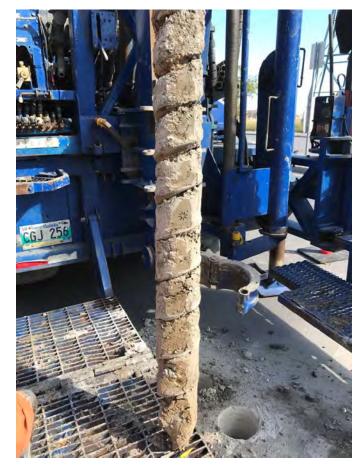




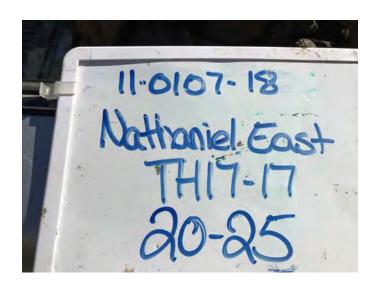








TH17-17



APPENDIX D GEOTECHNICAL INVESTIGATIONS LABORATORY DATA

Stantec Consulting Ltd. 199 Henlow Bay, Winnipeg MB R3Y 1G4

May 19, 2016 File: 123311974

Attention: Ms. Jacqueline MacLennan

KGS Group Inc. 3rd Floor – 865 Waverley Street Winnipeg, Manitoba R3T 5P4

Good day Jacqueline,

Reference: Cockburn and Calrossie Sewer Relief (11-0107-18)

Soil samples were submitted to our laboratory on May 4, 2016. The following tests were conducted on selected soil samples:

- Water content (ASTM D2216)
- Particle-Size Analysis (ASTM D422)
- Liquid Limit (multi-point), plastic limit, and plasticity index (ASTM D4318)
- Unconfined Compressive Strength of Cohesive Soil (ASTM D2166)

We appreciate the opportunity to assist you in this project. Please call if you have any questions regarding this report.

Regards,

STANTEC CONSULTING LTD.

Larry Presado, C.Tech. Geotechnical Technologist

Phone: (204) 488-6999 larry.presado@stantec.com Jason Thompson, C.E.T.
Senior Associate – Team Lead
Manager, Materials Testing Services

Phone: (204) 928-4004 jason.thompson@stantec.com

Attachment: Table 1 - Water Content Test Data

Table 2 - Particle Size Analysis and Atterberg Limits Test Data

3 x Particle Size Analysis Reports 12 x Atterberg Limits Reports

6 x Unconfined Compressive Strength Reports

May 19, 2016 Ms. Jacqueline MacLennan Page 2 of 3

Reference: Cockburn and Calrossie Sewer Relief (11-0107-018)

TABLE 1 WATER CONTENT TEST DATA

Testhole	Field Sample No.	Depth (ft.)	Water Content (%)	Testhole	Field Sample No.	Depth (ft.)	Water Content (%)
TU1/ 00	S3	9-10	22.9		S5	10	51.0
TH16-02	S5	18-19	56.3		S7	17-18	57.5
TH16-03	S5	17-18	53.4	TH16-08	S8	20	52.9
TU1/ OF	S2	-	25.0		S11	30	58.1
TH16-05	S4	18-19	53.1		S13	40	47.9
	S4	10	49.0		\$3	12	52.2
TU1/ 0/	S7	20	51.8	TU1/ 00	S6	20	57.4
TH16-06	S10	30	51.5	TH16-09	S9	30	46.5
	S13	40	51.9		S12	40	54.1
TH16-08	S3	6	24.8				

May 19, 2016 Ms. Jacqueline MacLennan Page 3 of 3

Reference: Cockburn and Calrossie Sewer Relief (11-0107-018)

TABLE 2 PARTICLE SIZE AND ATTERBERG LIMITS TEST DATA

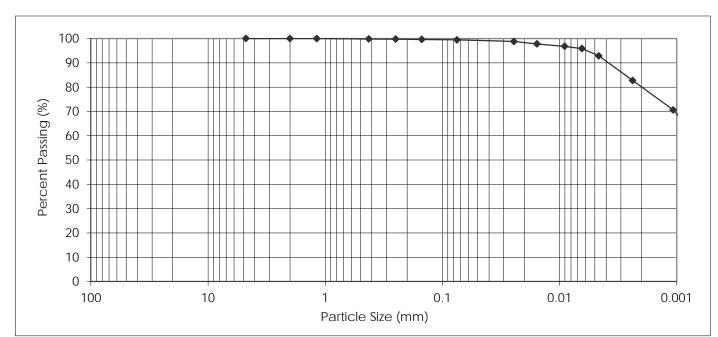
					Particl	e Size An	alysis			Att	erberg Li	mits
Testhole	Field Sample No.	Depth (ft.)	Gravel (%) 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt (%) <0.075 to 0.002 mm	Clay (%) <0.002 mm	Colloids (%) < 0.001 mm	Liquid Limit	Plastic Limit	Plasticity Index
TH16-02	S3	9-10	NT	NT	NT	NT	NT	NT	NT	26	16	10
TH16-02	S5	18-19	NT	NT	NT	NT	NT	NT	NT	105	32	73
TH16-03	S5	17-18	NT	NT	NT	NT	NT	NT	NT	98	29	69
TH16-05	S2	ı	NT	NT	NT	NT	NT	NT	NT	27	17	10
TH16-05	S4	18-19	NT	NT	NT	NT	NT	NT	NT	93	27	66
TH16-06	S 7	-	0.0	0.0	0.2	0.3	19.4	80.1	69.0	97	27	70
TH16-06	S10	-	NT	NT	NT	NT	NT	NT	NT	72	23	49
TH16-08	S7	17-18	NT	NT	NT	NT	NT	NT	NT	100	30	70
TH16-08	S8	-	0.0	0.0	0.1	0.3	18.2	81.4	66.6	95	29	66
TH16-08	S11	-	NT	NT	NT	NT	NT	NT	NT	81	23	58
TH16-09	S6	-	0.0	0.1	0.3	0.5	18.2	80.9	67.3	98	29	69
TH16-09	S9	-	NT	NT	NT	NT	NT	NT	NT	85	25	60

Notes:

- 1. A high speed stirring device was used for 1 minute to disperse the test sample for particle size analysis
- 2. The soil samples were air-dried during sample preparation for Atterberg limits and particle size analysis
- 3. NT* sample not tested

LABORATORY

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

PROJECT: Cockburn & Calrossie

KGS Group 3rd Floor - 865 Waverley St. Winnipeg, Manitoba R3T 5P4

Attention: Ms. Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 10, 2016 SAMPLE ID: TH16-06, S7 TESTED BY: Nestor Abarca

PART	RTICLE PERCENT			PARTI	CLE	PERCENT	
SIZ	SIZE		PASSING		SIZE		
37.50	37.50 mm		100.0		1.18 mm		
25.00	25.00 mm			0.425 mm		99.8	
19.00	mm	100.0		0.250	mm	99.7	
16.00	mm	100.0		0.150	mm	99.6	
12.50	mm	100.0		0.075	mm	99.5	
9.50	mm	100.0		0.005	mm	93.6	
4.75	mm	100.0		0.002	mm	80.1	
2.00	mm	100.0		0.001	mm	69.0	
		Sand, %					
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm	

REPORT DATE: May 14, 2016

0.0

0.3

19.4

REVIEWED BY: Jason Thompson, C.E.T.

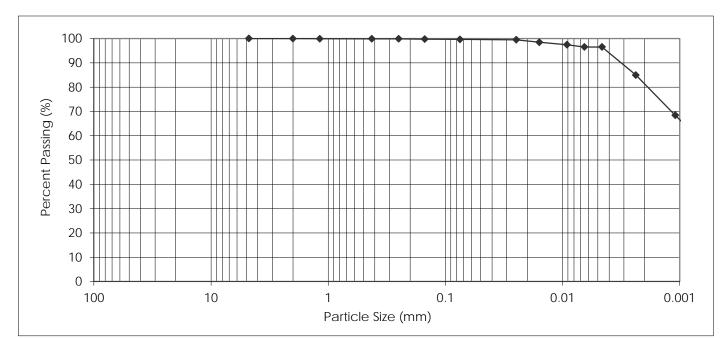
80.1

69.0

0.2

0.0

LABORATORY


199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422

KGS Group 3rd Floor - 865 Waverley St. Winnipeg, Manitoba R3T 5P4 PROJECT: Cockburn & Calrossie

Attention: Ms. Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 10, 2016 SAMPLE ID: TH16-08, S8 TESTED BY: Nestor Abarca

PART	TICLE	PERCENT		PART	ICLE	PERCENT
SI	SIZE PASSING			SIZ	Έ	PASSING
37.50	mm	100.0		1.18	mm	99.9
25.00	25.00 mm 10			0.425	99.9	
19.00	19.00 mm			0.250	mm	99.9
16.00	16.00 mm			0.150 mm		99.7
12.50	mm	100.0		0.075	mm	99.6
9.50	9.50 mm			0.005	mm	96.5
4.75	mm	100.0		0.002	mm	81.4
2.00	2.00 mm			0.001	mm	66.6
	Sand, %					
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm

REPORT DATE: May 14, 2016

0.0

0.0

0.3

18.2

REVIEWED BY: Jason Thompson, C.E.T.

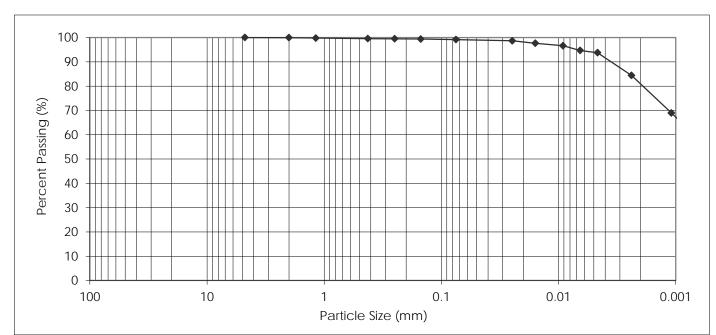
81.4

66.6

0.1

LABORATORY

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999


PARTICLE SIZE ANALYSIS ASTM D422

PROJECT: Cockburn & Calrossie

KGS Group 3rd Floor - 865 Waverley St. Winnipeg, Manitoba R3T 5P4

Attention: Ms. Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 10, 2016 SAMPLE ID: TH16-09, \$6 TESTED BY: Nestor Abarca

PAR	TICLE	PERCENT		PARTI	CLE	PERCENT	
SI.	SIZE		PASSING		SIZE		
37.50	37.50 mm		100.0		1.18 mm		
25.00	25.00 mm			0.425	mm	99.6	
19.00	mm	100.0		0.250	mm	99.5	
16.00	mm	100.0		0.150	mm	99.4	
12.50	mm	100.0		0.075	mm	99.1	
9.50	mm	100.0		0.005	mm	93.9	
4.75	mm	100.0		0.002	mm	80.9	
2.00	mm	99.9		0.001	mm	67.3	
		Sand, %					
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm	

REPORT DATE: May 14, 2016

0.0

0.1

0.5

18.2

REVIEWED BY: Jason Thompson, C.E.T.

80.9

67.3

0.3

Sample:

Atterberg Limits

ASTM D4318

Method A- Multi-Point

TH16-02, S3

Client: KGS Group

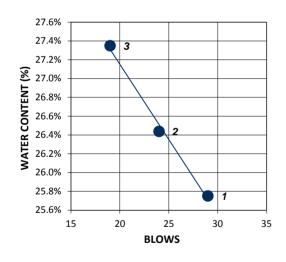
Project Name: Cockburn & Calrossie

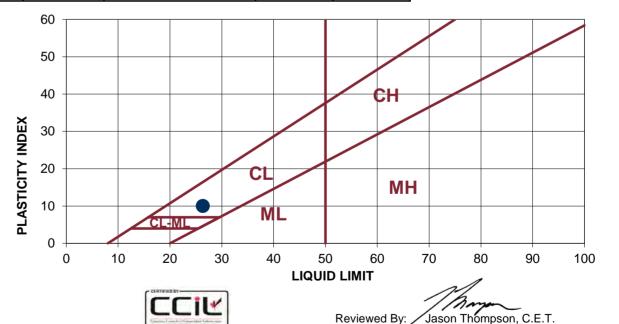
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			PLASTIC LIMIT			
Trial	1	2	3	Trial	1	2	
No. of Blows	29	24	19	Illai	1	2	
Tare No.	158	181	217	Tare No.	261	280	
Wt. Sa. (wet+tare)(g)	48	41	43	Wt. Sa. (wet+tare)(g)	40.82	35.96	
Wt. Sa. (dry+tare)(g)	43	37	38	Wt. Sa. (dry+tare)(g)	37.99	33.78	
Wt. Tare (g)	20	20	19	Wt. Tare (g)	20.39	20.21	
Wt. Dry Soil (g)	22.3	16.3	19.1	Wt. Dry Soil (g)	17.6	13.6	
Wt. Water (g)	5.7	4.3	5.2	Wt. Water (g)	2.8	2.2	
Water Content (%)	25.8%	26.4%	27.3%	Water Content (%)	16.1%	16.1%	

RESULTS			
LL	26		
PL	16		
PI	10		

Atterberg Limits

ASTM D4318 Method A- Multi-Point Client: KGS Group
Project Name: Cockburn & Calrossie

123311974

Date Received: May 4, 2016

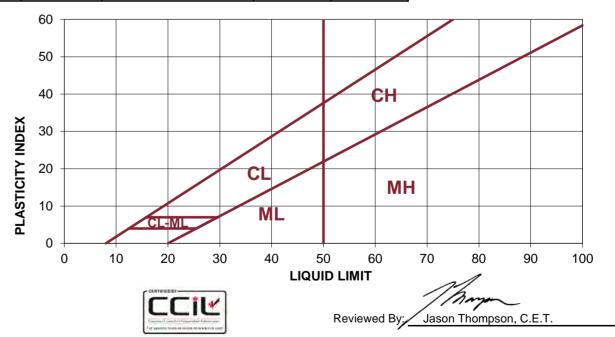
Date Tested: May 11, 2016

Tested By: Nestor Abarca

LABORATORY

199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999


Sample:		TH16-02, S5				<u></u>		
	LIC	QUID LIMIT			_	PLAS	STIC LIMIT	
Trial		1	2	3	Triol		1	2
NI CDI					- Trial		ļ !	

Project No:

Trial	1	2	3	Trial	1	2
No. of Blows	29	24	19	IIIai	'	2
Tare No.	133	140	178	Tare No.	238	310
Wt. Sa. (wet+tare)(g)	38	40	39	Wt. Sa. (wet+tare)(g)	30.54	28.54
Wt. Sa. (dry+tare)(g)	29	30	29	Wt. Sa. (dry+tare)(g)	28.17	26.62
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.70	20.54
Wt. Dry Soil (g)	9.2	9.9	9.2	Wt. Dry Soil (g)	7.5	6.1
Wt. Water (g)	9.5	10.4	9.8	Wt. Water (g)	2.4	1.9
Water Content (%)	103.6%	105.3%	106.7%	Water Content (%)	31.7%	31.6%

RESULTS				
LL	105			
PL	32			
PI	73			

Sample:

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-03, S5

Client: KGS Group

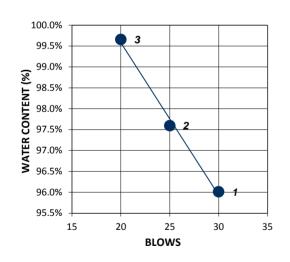
Project Name: Cockburn & Calrossie

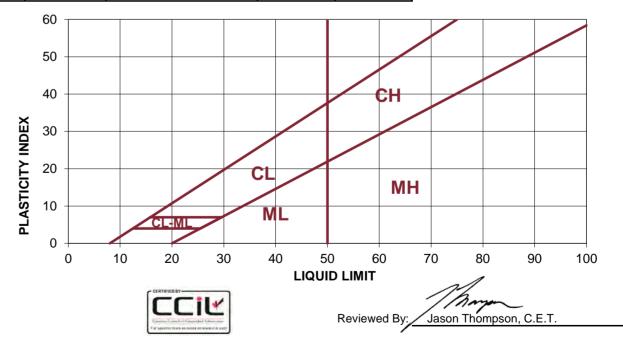
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

		'				
	LIQUID LIMIT			PLASTIC LIMIT		
Trial	1	2	3		1	2
No. of Blows	30	25	20	IIIdi		2
Tare No.	133	140	178	Tare No.	238	310
Wt. Sa. (wet+tare)(g)	39	40	43	Wt. Sa. (wet+tare)(g)	29.30	31.07
Wt. Sa. (dry+tare)(g)	30	30	31	Wt. Sa. (dry+tare)(g)	27.34	28.68
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.68	20.54
Wt. Dry Soil (g)	10.0	10.4	11.7	Wt. Dry Soil (g)	6.7	8.1
Wt. Water (g)	9.6	10.2	11.7	Wt. Water (g)	2.0	2.4
Water Content (%)	96.0%	97.6%	99.7%	Water Content (%)	29.4%	29.4%

RESULTS				
LL	98			
PL	29			
PI	69			

Atterberg Limits

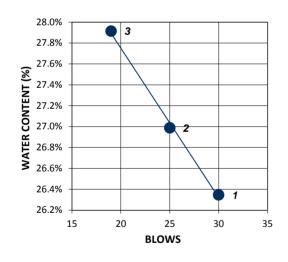
ASTM D4318 Method A- Multi-Point Client: KGS Group

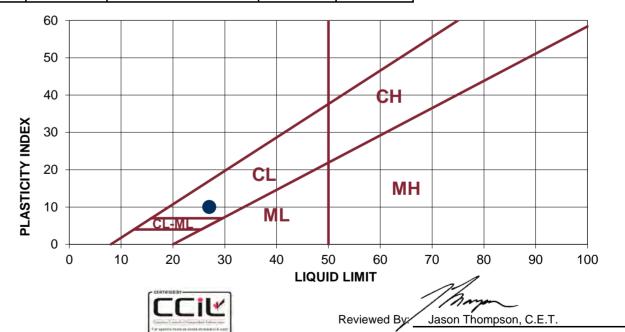
Project Name: Cockburn & Calrossie

Project No: 123311974
Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

Sample:	TH16-0	05, S2				
LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	19	IIIai	l	2
Tare No.	189	196	259	Tare No.	266	311
Wt. Sa. (wet+tare)(g)	43	41	44	Wt. Sa. (wet+tare)(g)	36.69	38.28
Wt. Sa. (dry+tare)(g)	38	37	39	Wt. Sa. (dry+tare)(g)	34.33	35.72
Wt. Tare (g)	19	20	20	Wt. Tare (g)	20.61	20.77
Wt. Dry Soil (g)	18.8	17.0	18.3	Wt. Dry Soil (g)	13.7	15.0
Wt. Water (g)	4.9	4.6	5.1	Wt. Water (g)	2.4	2.6
Water Content (%)	26.3%	27.0%	27.9%	Water Content (%)	17.2%	17 1%

RESULTS		
LL	27	
PL	17	
PI	10	

Atterberg Limits

ASTM D4318 Method A- Multi-Point Client: KGS Group

Project Name: Cockburn & Calrossie

Project No: 123311974

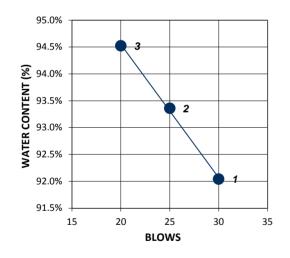
Date Received: May 4, 2016

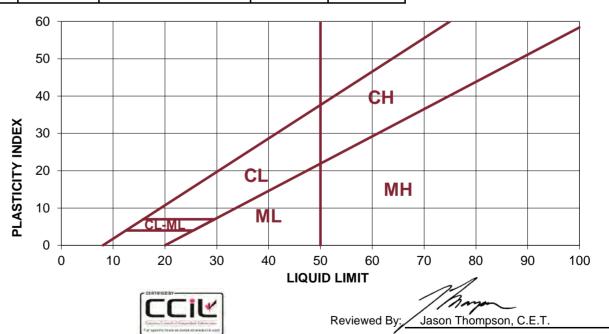
Date Tested: May 11, 2016
Tested By: Nestor Abarca

Tel: (204) 488-6999

Sample: TH16-05, S4

LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	20	IIIdi	'	2
Tare No.	154	235	247	Tare No.	264	293
Wt. Sa. (wet+tare)(g)	38	40	40	Wt. Sa. (wet+tare)(g)	28.83	31.05
Wt. Sa. (dry+tare)(g)	29	31	30	Wt. Sa. (dry+tare)(g)	27.00	28.87
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.23	20.89
Wt. Dry Soil (g)	9.3	10.1	10.4	Wt. Dry Soil (g)	6.8	8.0
Wt. Water (g)	8.6	9.4	9.8	Wt. Water (g)	1.8	2.2
Water Content (%)	92.0%	93.4%	94.5%	Water Content (%)	27.0%	27.3%


RESULTS		
LL	93	
PL	27	
PI	66	


LABORATORY

199 Henlow Bay

Winnipeg, Manitoba

Canada R3Y 1G4

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-06, S7

Client: KGS Group
Project Name: Cockburn &

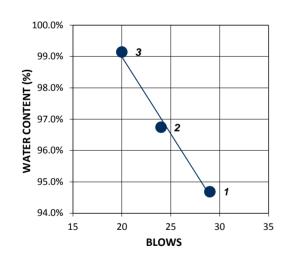
Cockburn & Calrossie 123311974

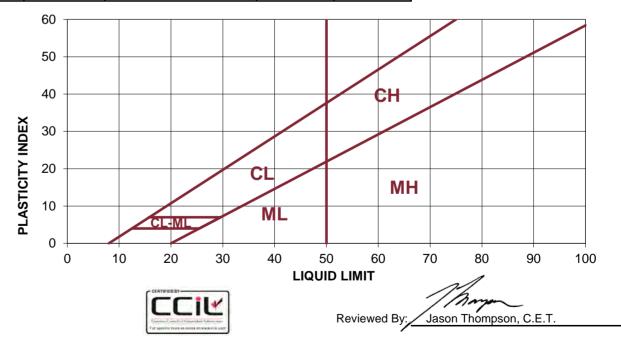
Date Received: May 4, 2016

Date Tested: May 11, 2016

Tested By: Nestor Abarca

LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4


Tel: (204) 488-6999

	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	29	24	20	IIIai	'	2
Tare No.	152	157	192	Tare No.	243	254
Wt. Sa. (wet+tare)(g)	36	38	36	Wt. Sa. (wet+tare)(g)	30.70	32.96
Wt. Sa. (dry+tare)(g)	28	29	28	Wt. Sa. (dry+tare)(g)	28.59	30.31
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.86	20.65
Wt. Dry Soil (g)	8.5	8.9	8.2	Wt. Dry Soil (g)	7.7	9.7
Wt. Water (g)	8.0	8.6	8.1	Wt. Water (g)	2.1	2.7
Water Content (%)	94.7%	96.7%	99.1%	Water Content (%)	27.3%	27.4%

Project No:

RESULTS		
LL	97	
PL	27	
PI	70	

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-06, S10

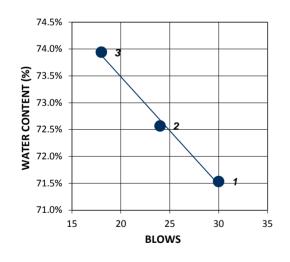
Client: KGS Group

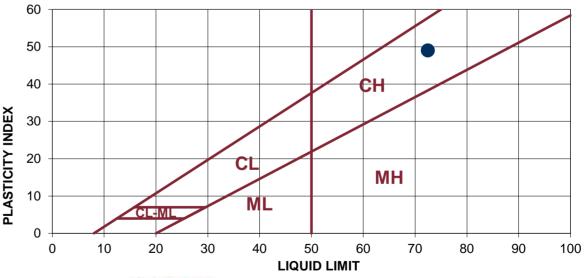
Project Name: Cockburn & Calrossie

Project No: 123311974
Date Received: May 4, 2016

Date Tested: May 10, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	30	24	18	IIIdi	'	2
Tare No.	158	181	217	Tare No.	261	280
Wt. Sa. (wet+tare)(g)	41	44	39	Wt. Sa. (wet+tare)(g)	35.13	32.56
Wt. Sa. (dry+tare)(g)	33	34	30	Wt. Sa. (dry+tare)(g)	32.40	30.29
Wt. Tare (g)	20	20	19	Wt. Tare (g)	20.40	20.22
Wt. Dry Soil (g)	12.3	13.8	11.3	Wt. Dry Soil (g)	12.0	10.1
Wt. Water (g)	8.8	10.0	8.4	Wt. Water (g)	2.7	2.3
Water Content (%)	71.5%	72.6%	73.9%	Water Content (%)	22.8%	22.5%

RESULTS		
LL	72	
PL	23	
PI	49	

Reviewed By: Jason Thompson, C.E.T.

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-08, S7

Client: KGS Group
Project Name: Cockburn & Calrossie

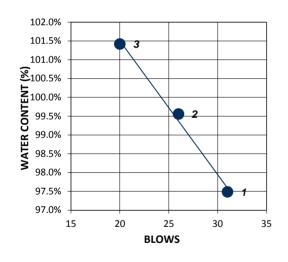
123311974

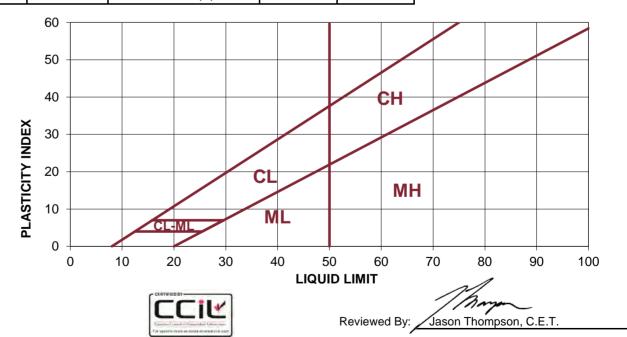
Date Received: May 4, 2016

Date Tested: May 11, 2016

Tested By: Nestor Abarca

LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4


Tel: (204) 488-6999

oampio i	11110	, , , , ,				
	LIQUID LIMIT			<u> </u>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	31	26	20	Illai	1	
Tare No.	234	245	249	Tare No.	262	287
Wt. Sa. (wet+tare)(g)	37	38	38	Wt. Sa. (wet+tare)(g)	30.28	33.21
Wt. Sa. (dry+tare)(g)	29	29	29	Wt. Sa. (dry+tare)(g)	28.10	30.29
Wt. Tare (g)	21	20	20	Wt. Tare (g)	20.72	20.57
Wt. Dry Soil (g)	8.4	9.0	9.2	Wt. Dry Soil (g)	7.4	9.7
Wt. Water (g)	8.2	9.0	9.3	Wt. Water (g)	2.2	2.9
Water Content (%)	97.5%	99.6%	101.4%	Water Content (%)	29.5%	30.0%

Project No:

RESULTS		
LL	100	
PL	30	
PI	70	

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-08, S8

Client: KGS Group

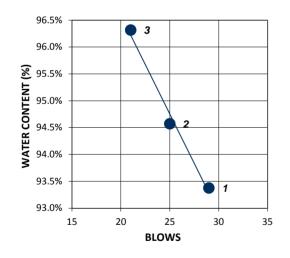
Project Name: Cockburn & Calrossie

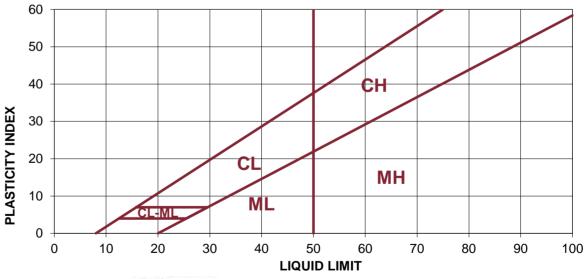
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			— PL <i>A</i>	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	29	25	21	IIIai	'	
Tare No.	152	157	192	Tare No.	243	254
Wt. Sa. (wet+tare)(g)	38	38	42	Wt. Sa. (wet+tare)(g)	30.56	30.81
Wt. Sa. (dry+tare)(g)	29	30	31	Wt. Sa. (dry+tare)(g)	28.40	28.53
Wt. Tare (g)	20	20	20	Wt. Tare (g)	20.85	20.64
Wt. Dry Soil (g)	9.5	9.2	11.4	Wt. Dry Soil (g)	7.6	7.9
Wt. Water (g)	8.9	8.7	11.0	Wt. Water (g)	2.2	2.3
Water Content (%)	93.4%	94.6%	96.3%	Water Content (%)	28.6%	28.9%

RESULTS		
LL	95	
PL	29	
PI	66	

Reviewed By: Jason Thompson, C.E.T.

Atterberg Limits

ASTM D4318

Method A- Multi-Point

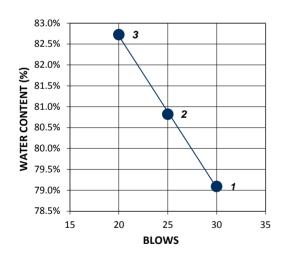
TH16-08, S11

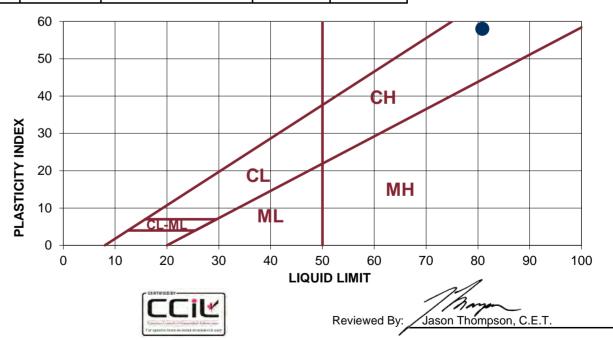
KGS Group Client:

Project Name: Cockburn & Calrossie

Project No: 123311974

Date Received: May 4, 2016 Date Tested: May 12, 2016


Tested By: Nestor Abarca **LABORATORY**


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT			 PLA	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	20	IIIai	'	2
Tare No.	234	245	249	Tare No.	262	287
Wt. Sa. (wet+tare)(g)	41	41	41	Wt. Sa. (wet+tare)(g)	30.65	30.48
Wt. Sa. (dry+tare)(g)	32	32	32	Wt. Sa. (dry+tare)(g)	28.76	28.59
Wt. Tare (g)	21	20	20	Wt. Tare (g)	20.70	20.55
Wt. Dry Soil (g)	11.2	11.7	11.5	Wt. Dry Soil (g)	8.1	8.0
Wt. Water (g)	8.9	9.4	9.5	Wt. Water (g)	1.9	1.9
Water Content (%)	79.1%	80.8%	82.7%	Water Content (%)	23.4%	23.5%

RE	RESULTS			
LL	81			
PL	23			
PI	58			

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-09, S6

Client: KGS Group

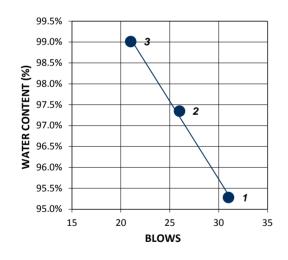
Project Name: Cockburn & Calrossie

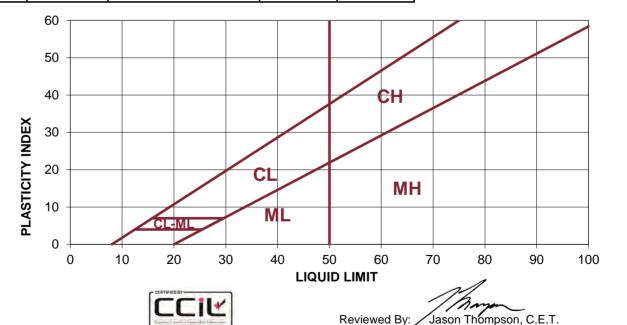
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 10, 2016

Tested By: Nestor Abarca


LABORATORY199 Henlow Bay


Winnipeg, Manitoba
Canada R3Y 1G4

Tel: (204) 488-6999

' <u></u>	LIQUID LIMIT	•		 PLA	ASTIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	31	26	21	Illai	'	2
Tare No.	189	196	259	Tare No.	266	311
Wt. Sa. (wet+tare)(g)	37	40	39	Wt. Sa. (wet+tare)(g)	31.55	32.1
Wt. Sa. (dry+tare)(g)	28	30	30	Wt. Sa. (dry+tare)(g)	29.11	29.56
Wt. Tare (g)	19	20	20	Wt. Tare (g)	20.61	20.79
Wt. Dry Soil (g)	9.1	10.6	9.1	Wt. Dry Soil (g)	8.5	8.8
Wt. Water (g)	8.7	10.3	9.0	Wt. Water (g)	2.4	2.5
Water Content (%)	95.3%	97.3%	99.0%	Water Content (%)	28.7%	29.0%

RESULTS		
LL	98	
PL	29	
PI	69	

Atterberg Limits

ASTM D4318 Method A- Multi-Point

TH16-09, S9

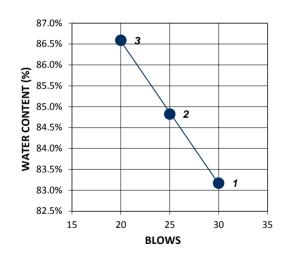
Client: KGS Group
Project Name: Cockburn & Calrossie

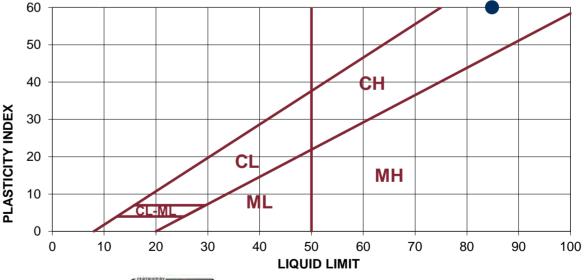
Project No: 123311974

Date Received: May 4, 2016

Date Tested: May 12, 2016

Tested By: Nestor Abarca


LABORATORY


199 Henlow Bay Winnipeg, Manitoba Canada R3Y 1G4

Tel: (204) 488-6999

	LIQUID LIMIT	PLASTIC LIMIT				
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	20	IIIai	'	2
Tare No.	154	235	247	Tare No.	264	293
Wt. Sa. (wet+tare)(g)	42	40	44	Wt. Sa. (wet+tare)(g)	33.52	33.69
Wt. Sa. (dry+tare)(g)	32	31	33	Wt. Sa. (dry+tare)(g)	30.88	31.15
Wt. Tare (g)	20	21	20	Wt. Tare (g)	20.23	20.87
Wt. Dry Soil (g)	12.4	10.4	12.9	Wt. Dry Soil (g)	10.7	10.3
Wt. Water (g)	10.3	8.8	11.2	Wt. Water (g)	2.6	2.5
Water Content (%)	83.2%	84.8%	86.6%	Water Content (%)	24.8%	24.7%

RESULTS					
LL	85				
PL	25				
PI	60				

Reviewed By: Jason Thompson, C.E.T.

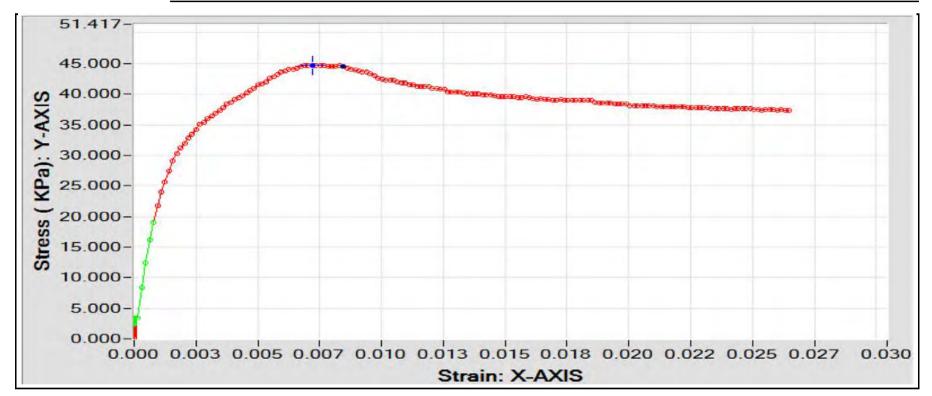
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-06, S7
TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	71.36
Height, mm:	162.17
Height/Diameter Ratio:	2.27 : 1
Sample Weight, g:	1108.87
Moisture Content. %:	53.1
Wet Unit Weight, kN/m³:	16.76
Dry Unit Weight, kN/m³:	10.95
Void ratio:	1.46
Saturation, %:	99.84
Unconfined Compressive Strength, kPa:	45
Strain at Failure, %:	0.72

REPORT DATE: May 18, 2016

REVIEWED BY:

Asson Thompson, C.E.T.

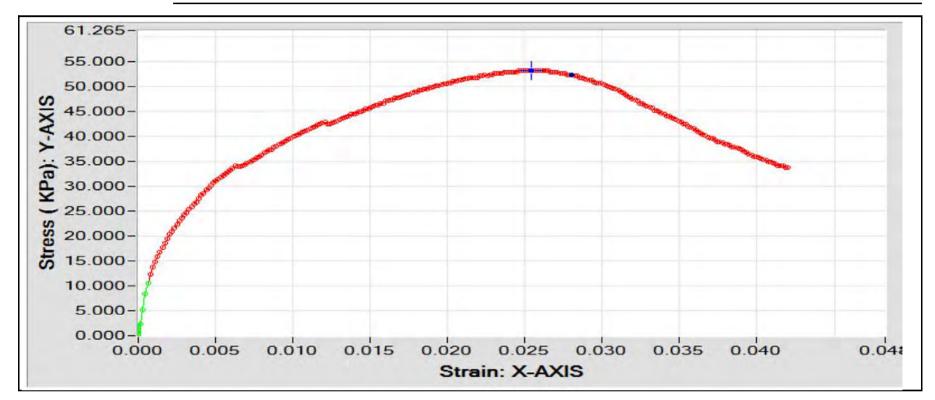
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-06, S10 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

REPORT DATE: May 18, 2016

	T
Diameter, mm:	71.88
Height, mm:	162.10
Height/Diameter Ratio:	2.26 : 1
Sample Weight, g:	1130.61
Moisture Content. %:	52.4
Wet Unit Weight, kN/m³:	16.84
Dry Unit Weight, kN/m³:	11.05
Void ratio:	1.44
Saturation, %:	100.16
Unconfined Compressive Strength, kPa:	53
Strain at Failure, %:	2.54

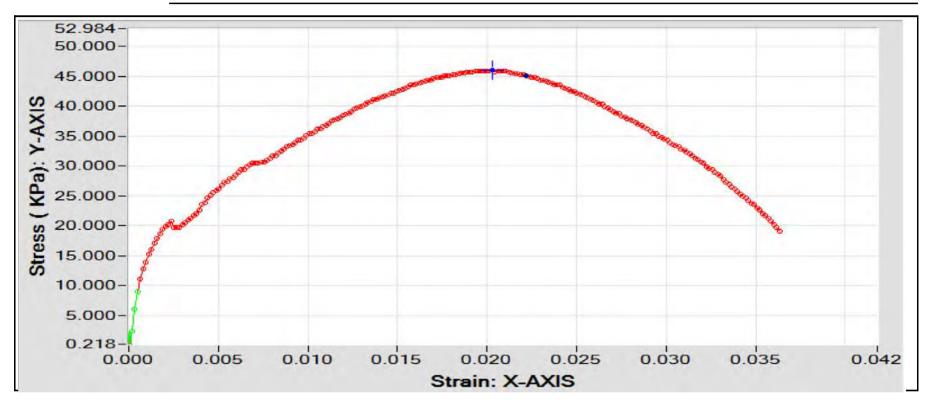
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL **ASTM D2166**

PROJECT: Cockburn/Calrossie (11-0107-18) Client KGS Group Inc.

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016 SAMPLE ID: TH16-08, S8 TESTED BY: Larry Presado

Clay, grey, firm, moist, high plasticity Soil Description:

trace silt till inclusions

Failure Description: Diagonal shear failure

REPORT DATE: May 18, 2016

Diameter, mm:	72.11
Height, mm:	161.47
Height/Diameter Ratio:	2.24 : 1
Sample Weight, g:	1099.55
Moisture Content. %:	58.1
Wet Unit Weight, kN/m³:	16.34
Dry Unit Weight, kN/m³:	10.34
Void ratio:	1.61
Saturation, %:	99.39
Unconfined Compressive Strength, kPa:	45
Strain at Failure, %:	2.03

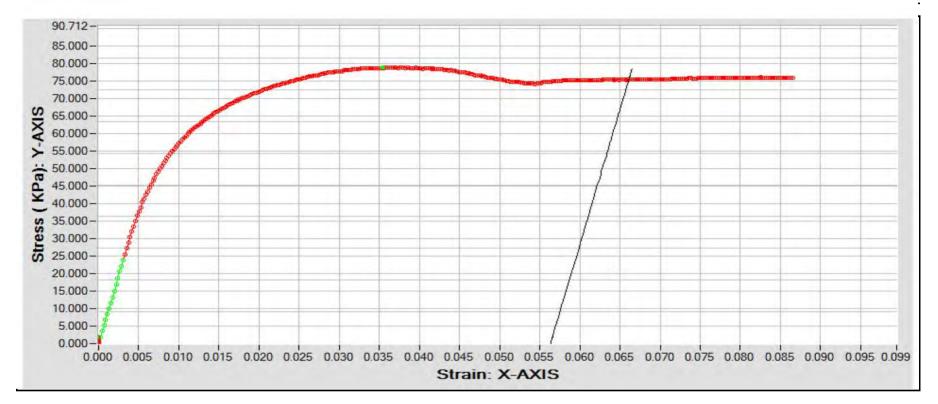
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL **ASTM D2166**

PROJECT: Cockburn/Calrossie (11-0107-18) Client KGS Group Inc.

3rd Floor - 865 Waverley Street Address

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

REPORT NO.: Attention: Ms. Jacqueline MacLennan

SAMPLED BY: DATE RECEIVED: Client May 4, 2016 SAMPLE ID: TH16-08, S11 TESTED BY: Larry Presado

Clay, grey, firm, moist, high plasticity Soil Description:

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	71.85
Height, mm:	116.27
Height/Diameter Ratio:	1.62 : 1
Sample Weight, g:	818.44
Moisture Content. %:	54.1
Wet Unit Weight, kN/m³:	17.02
Dry Unit Weight, kN/m³:	11.04
Void ratio:	1.44
Saturation, %:	103.28
Unconfined Compressive Strength, kPa:	79
Strain at Failure, %:	3.54

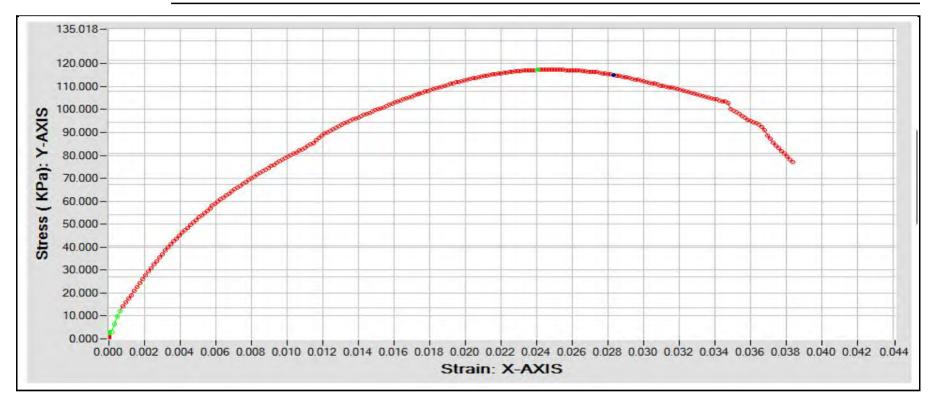
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-09, S6 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	72.09
Height, mm:	161.26
Height/Diameter Ratio:	2.24 :1
Sample Weight, g:	1105.62
Moisture Content. %:	51.2
Wet Unit Weight, kN/m³:	17.00
Dry Unit Weight, kN/m³:	10.89
Void ratio:	1.47
Saturation, %:	95.40
Unconfined Compressive Strength, kPa:	117
Strain at Failure, %:	2.41

REPORT DATE: May 18, 2016

REVIEWED BY:

Jason Thompson, C.E.T.

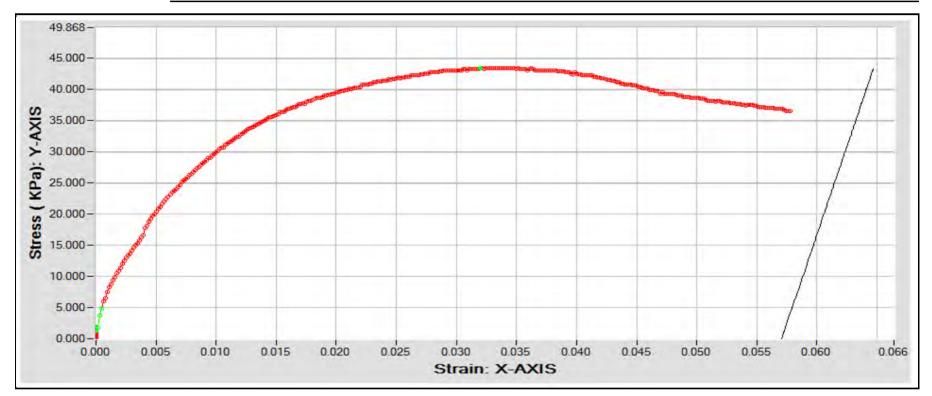
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: Cockburn/Calrossie (11-0107-18)

Address 3rd Floor - 865 Waverley Street

City, Prov Winnipeg, Manitoba


Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Ms. Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 4, 2016
SAMPLE ID: TH16-09, S9 TESTED BY: Larry Presado

Soil Description: Clay, grey, firm, moist, high plasticity

trace silt till inclusions

Failure Description: Diagonal shear failure

Diameter, mm:	72.82			
Height, mm:	160.54			
Height/Diameter Ratio:	2.2:1			
Sample Weight, g:	1117.87			
Moisture Content. %:	52.1			
Wet Unit Weight, kN/m³:	16.40			
Dry Unit Weight, kN/m³:	10.77			
Void ratio:	1.50			
Saturation, %:	95.40			
Unconfined Compressive Strength, kPa:	43			
Strain at Failure, %:	3.20			

REPORT DATE: May 18, 2016

REVIEWED BY:

ason Thompson, C.E.T.

Stantec Consulting Ltd. 199 Henlow Bay, Winnipeg MB R3Y 1G4

May 16, 2017 File: 123311974

Attention Ms. Jacqueline MacLennan

KGS Group Inc. 3rd Floor – 865 Waverley St. Winnipeg, Manitoba R3T 5P4

Dear Jacqueline,

Reference: C5 - Cockburn & Calrossie Sewer Relief (11-0107-18)

On May 9, 2017, a total of thirty-nine (39) soil samples were submitted to our laboratory for analysis. The following tests were conducted on selected soil samples:

- Water content (ASTM D2216)
- Particle-Size Analysis (ASTM D422)
- Liquid Limit (multi-point), plastic limit, and plasticity index (ASTM D4318)
- Unconfined Compressive Strength of Cohesive Soil (ASTM D2166)

We appreciate the opportunity to assist you in this project. Please call if you have any questions regarding this report.

Regards,

Nestor Abarca, C. Tech. Geotechnical Technologist

Phone: (204) 488-6999 nestor.abarca@stantec.com

Jason Thompson, C.E.T.

Senior Associate - Team Lead

Manager, Materials Testing Services

Phone: (204) 928-4004

jason.thompson@stantec.com

Attachment: Table 1 - Water Content Test Data

Table 2 - Particle Size Analysis Test Data Table 3 - Atterberg Limits Test Data

9 x Shelby Tube Photos

4 x Particle Size Analysis Reports 10 x Atterberg Limits Reports

9 x Unconfined Compressive Strength Reports

Design with community in mind

May 16, 2017 Ms. Jacqueline MacLennan Page 2 of 8

Reference: C5 – Cockburn & Calrossie Sewer Relief (11-0107-18)

TABLE 1
WATER CONTENT TEST DATA

Testhole	Field Sample No.	Water Content (%)	Testhole	Field Sample No.	Water Content (%)
	S1	29.4		S1	34.2
TH17-01	\$3	53.1		\$3	54.2
	S12	22.2	TH17-10	S9	53.0
TH17-06	S1	34.9		S11	48.5
	S3	48.7		S12	14.8
	S9	48.4	TU17 10	S9	16.0
	S11	47.5	TH17-13	S11	12.7
	S13	20.0	TU17 1F	S1	36.0
TH17-09	S10	22.8	TH17-15	S12	13.0
	S11	16.1			

TABLE 2
PARTICLE SIZE ANALYSIS TEST DATA

		Particle Size Analysis						
Testhole Field Sample No.	Field		Sand (%)			Silt		
	Gravel (%) 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	(%) <0.075 to 0.002 mm	Clay (%) <0.002 mm	Colloids (%) < 0.001 mm	
TH17-06	S13	45.2	4.7	4.4	7.4	21.4	16.9	13.6
TH17-09	S11	9.4	6.2	10.0	14.9	39.2	20.3	16.1
TH17-10	S12	3.5	6.4	11.3	14.8	46.9	17.1	12.8
TH17-13	S11	46.5	17.7	14.2	8.4	9.8	3.4	2.0

Notes:

May 16, 2017 Ms. Jacqueline MacLennan Page 3 of 8

Reference: C5 - Cockburn & Calrossie Sewer Relief (11-0107-18)

- 1. A high speed stirring device was used for 1 minute to disperse the test sample for particle size analysis 2. The soil samples were air-dried during sample preparation for particle size analysis

TABLE 3 ATTERBERG LIMITS TEST DATA

		Att	erberg Li	mits
Testhole	Field Sample No.	Liquid Limit	Plastic Limit	Plasticity Index
TH17-01	S3	102	29	73
TH17-01	S4	110	29	81
TH17-06	S3	98	28	70
TH17-06	S6	92	24	68
TH17-06	S9	93	27	66
TH17-10	S3	106	31	75
TH17-10	S6	86	24	62
TH17-10	S11	88	24	64
TH17-15	S4	108	28	80
TH17-15	S6	91	26	65

Notes:

1. The soil samples were air-dried during sample preparation for Atterberg limits

May 16, 2017 Ms. Jacqueline MacLennan Page 4 of 8

Reference: C5 – Cockburn & Calrossie Sewer Relief (11-0107-18)

Shelby Tube Photos

TH17-01, S4

TH17-01, S8

May 16, 2017 Ms. Jacqueline MacLennan Page 5 of 8

Reference: C5 - Cockburn & Calrossie Sewer Relief (11-0107-18)

TH17-06, S4

TH17-06, S6

May 16, 2017 Ms. Jacqueline MacLennan Page 6 of 8

Reference: C5 - Cockburn & Calrossie Sewer Relief (11-0107-18)

TH17-10, S6

TH17-12, S4

May 16, 2017 Ms. Jacqueline MacLennan Page 7 of 8

Reference: C5 - Cockburn & Calrossie Sewer Relief (11-0107-18)

TH17-12, S8

TH17-15, S4

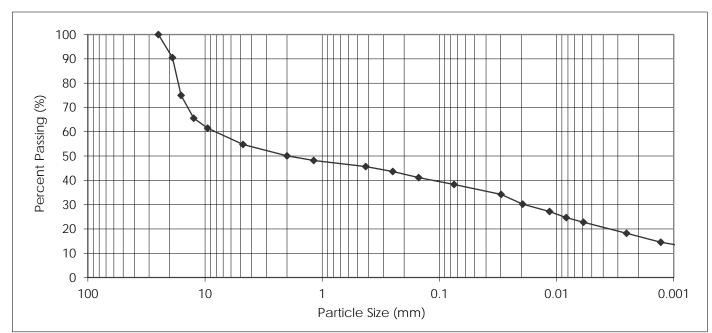
May 16, 2017 Ms. Jacqueline MacLennan Page 8 of 8

Reference: C5 – Cockburn & Calrossie Sewer Relief (11-0107-18)

TH17-15, S6

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: C-5 Cockburn & Calrossie

Sewer Relief

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 9, 2017

SAMPLE ID: TH17-06, S13 TESTED BY: Nestor Abarca, C.Tech.

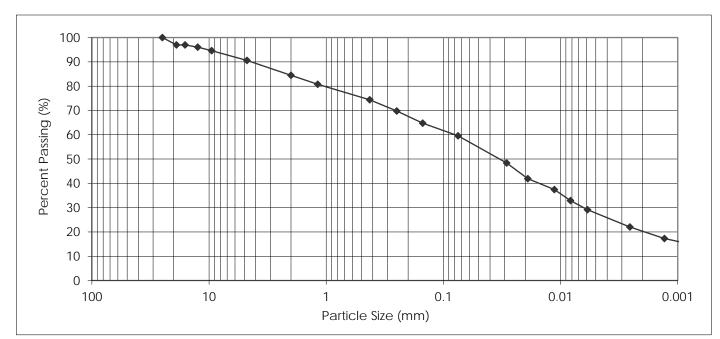
			1		
PART	RTICLE PERCENT		PART	ICLE	PERCENT
SIZ	ZE	PASSING	SIZ	Έ	PASSING
37.50	mm	100.0	1.18	mm	48.2
25.00	mm	100.0	0.425	mm	45.7
19.00	mm	90.5	0.250	mm	43.6
16.00	mm	74.9	0.150	mm	41.1
12.50	mm	65.5	0.075	mm	38.3
9.50	mm	61.5	0.005	mm	21.8
4.75 mm 5		54.8	0.002	mm	16.9
2.00 mm 50.1		0.001	mm	13.6	
Carried W		Sand, %	CIL 0/	0104	C-II-1-I- 0/

		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm
45.2	4.7	4.4	7.4	21.4	16.9	13.6

REPORT DATE: May 16, 2017

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: C-5 Cockburn & Calrossie

Sewer Relief

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 9, 2017

SAMPLE ID: TH17-09, S11 TESTED BY: Nestor Abarca, C.Tech.

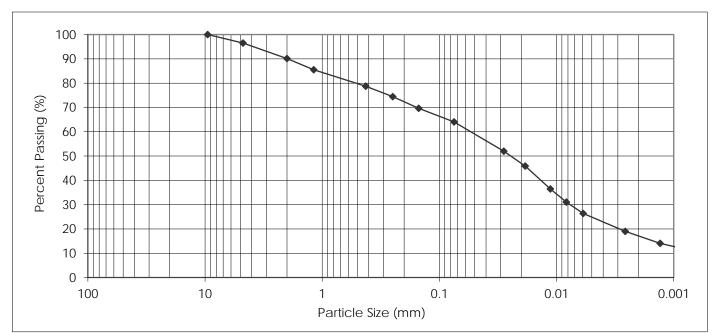
PARTICLE		PERCENT		PARTI	ICLE	PERCENT
SIZ	ZE	PASSING		SIZ	E	PASSING
37.50	mm	100.0		1.18	mm	80.8
25.00	mm	100.0		0.425	mm	74.4
19.00	mm	97.0		0.250	mm	69.8
16.00	mm	97.0		0.150 mm		64.8
12.50	mm	96.0		0.075	mm	59.5
9.50	mm	94.6		0.005	mm	27.7
4.75	4.75 mm			0.002	mm	20.3
2.00 mm		84.4		0.001	mm	16.1
		Sand, %				
Gravel, %	Coarse	Medium	Fine	Silt, %	Clay, %	Colloids, %

Gravel, %	Coarse <4.75 to 2.0 mm	Medium	Fine	Silt, %	Clay, %	Colloids, %
75 to 4.75 mm		<2.0 to 0.425 mm	<0.425 to 0.075 mm	<0.075 to 0.002 mm	<0.002 mm	< 0.001 mm
9.4	6.2	10.0	14.9	39.2	20.3	16.1

REPORT DATE: May 16, 2017

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422


KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4 PROJECT: C-5 Cockburn & Calrossie

Sewer Relief

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 9, 2017

SAMPLE ID: TH17-10, S12 TESTED BY: Nestor Abarca, C.Tech.

PARTICLE	PERCENT	PARTICLE	PERCENT
SIZE	PASSING	SIZE	PASSING
37.50 mm	100.0	1.18 mm	85.5
25.00 mm	100.0	0.425 mm	78.8
19.00 mm	100.0	0.250 mm	74.4
16.00 mm	100.0	0.150 mm	69.7
12.50 mm	100.0	0.075 mm	64.0
9.50 mm	100.0	0.005 mm	24.9
4.75 mm	96.5	0.002 mm	17.1
2.00 mm	90.1	0.001 mm	12.8
	Sand %		

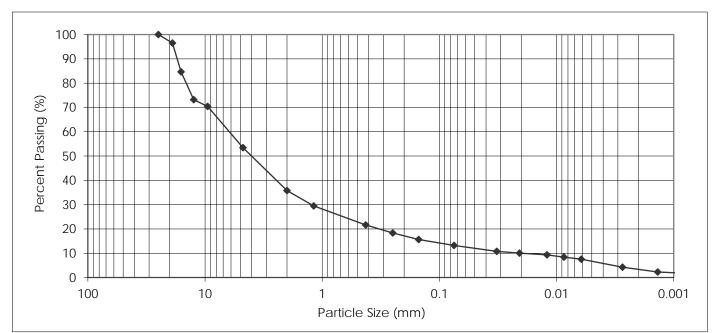
		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm
3.5	6.4	11.3	14.8	46.9	17.1	12.8

REPORT DATE: May 16, 2017

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

PARTICLE SIZE ANALYSIS ASTM D422

KGS Group Inc. 3rd Floor - 865 Waverley Street Winnipeg, Manitoba R3T 5P4


PROJECT: C-5 Cockburn & Calrossie

Sewer Relief

Attention: Jacqueline MacLennan PROJECT NO.: 123311974

SAMPLED BY: Client DATE RECEIVED: May 9, 2017

SAMPLE ID: TESTED BY: Nestor Abarca, C.Tech. TH17-13, S11

		_		
PARTICLE	PERCENT		PARTICLE	PERCENT
SIZE	PASSING		SIZE	PASSING
37.50 mm	100.0		1.18 mm	29.5
25.00 mm	100.0		0.425 mm	21.6
19.00 mm	96.5		0.250 mm	18.3
16.00 mm	84.6		0.150 mm	15.6
12.50 mm	73.2		0.075 mm	13.2
9.50 mm	70.4		0.005 mm	6.7
4.75 mm	53.5		0.002 mm	3.4
2.00 mm	35.8		0.001 mm	2.0
	Sand %			

		Sand, %				
Gravel, % 75 to 4.75 mm	Coarse <4.75 to 2.0 mm	Medium <2.0 to 0.425 mm	Fine <0.425 to 0.075 mm	Silt, % <0.075 to 0.002 mm	Clay, % <0.002 mm	Colloids, % < 0.001 mm
46.5	17.7	14.2	8.4	9.8	3.4	2.0

REPORT DATE: May 16, 2017

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

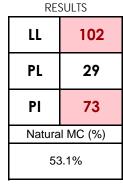
C5 - Cockburn and Calrossie Project Name:

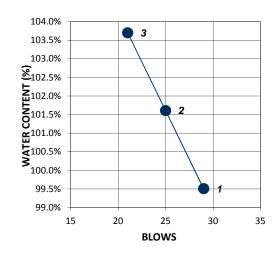
Sewer Relief (11-0107-18)

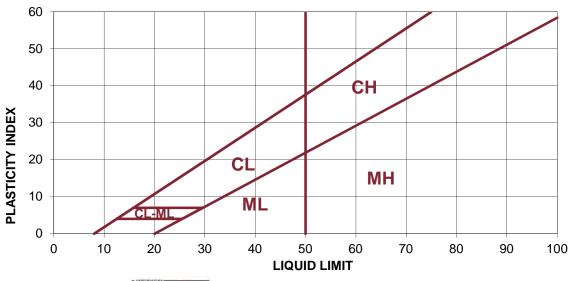
Project No: 123311974

Date Received: May 9, 2017

May 11, 2017 Date Tested:


Tested By: Nestor Abarca, C. Tech. **LABORATORY**


199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999

Sample:	TH17-0	1, S3				
	LIQUID LIMIT			 PLA	STIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	29	25	21	IIIai	'	2
Tare No.	149	157	194	Tare No.	304	305
Wt. Sa. (wet+tare)(g)	35	37	37	Wt. Sa. (wet+tare)(g)	29.92	29.74

Trial	1	2	3	-Trial	1	2
No. of Blows	29	25	21	IIIai	1	2
Tare No.	149	157	194	Tare No.	304	305
Wt. Sa. (wet+tare)(g)	35	37	37	Wt. Sa. (wet+tare)(g)	29.92	29.74
Wt. Sa. (dry+tare)(g)	27	29	28	Wt. Sa. (dry+tare)(g)	27.72	27.6
Wt. Tare (g)	19	20	19	Wt. Tare (g)	20.14	20.38
Wt. Dry Soil (g)	8.2	8.1	9.2	Wt. Dry Soil (g)	7.6	7.2
Wt. Water (g)	8.1	8.2	9.5	Wt. Water (g)	2.2	2.1
Water Content (%)	99.5%	101.6%	103.7%	Water Content (%)	29.0%	29.6%

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

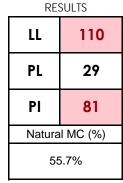
Sewer Relief (11-0107-18)

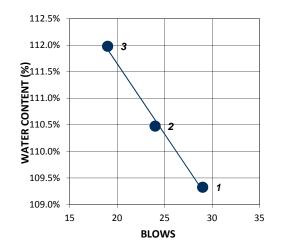
Project No: 123311974

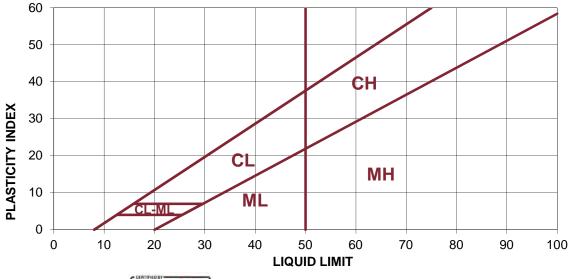
Date Received: May 9, 2017

Date Tested: May 12, 2017

Tested By: Nestor Abarca, C. Tech.


LABORATORY


199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999

Sample :	TH17-01, S4
=	HOUID HMIT

LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	Trial	1	2
No. of Blows	29	24	19	IIIdi	1	2
Tare No.	147	160	185	Tare No.	187	260
Wt. Sa. (wet+tare)(g)	37	37	37	Wt. Sa. (wet+tare)(g)	31.52	33.95
Wt. Sa. (dry+tare)(g)	28	27	27	Wt. Sa. (dry+tare)(g)	28.83	30.86
Wt. Tare (g)	20	19	19	Wt. Tare (g)	19.63	20.3
Wt. Dry Soil (g)	8.2	8.4	8.4	Wt. Dry Soil (g)	9.2	10.6
Wt. Water (g)	8.9	9.3	9.4	Wt. Water (g)	2.7	3.1
Water Content (%)	109.3%	110.5%	112.0%	Water Content (%)	29.2%	29.3%

Carlot Day of Da

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

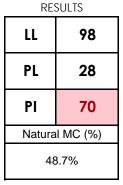
Sewer Relief (11-0107-18)

Project No: 123311974

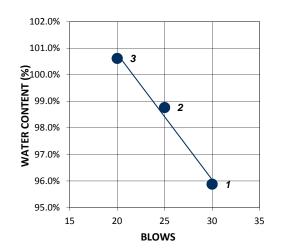
Date Received: May 9, 2017

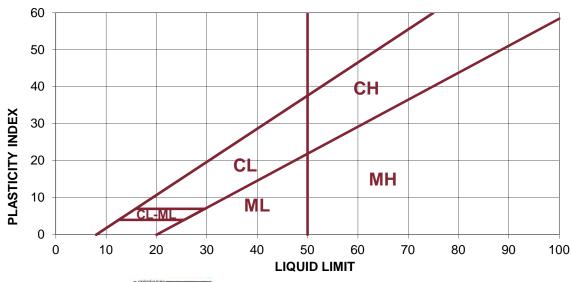
Date Tested: May 11, 2017

Tested By: Nestor Abarca, C. Tech.


LABORATORY

199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999


Sample :	TH17-06, S3
	LIOUID LIMIT

LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	Trial	1	2
No. of Blows	30	25	20	IIIai	ı	2
Tare No.	159	163	200	Tare No.	238	318
Wt. Sa. (wet+tare)(g)	37	39	36	Wt. Sa. (wet+tare)(g)	29.77	30.08
Wt. Sa. (dry+tare)(g)	29	29	28	Wt. Sa. (dry+tare)(g)	27.79	27.96
Wt. Tare (g)	19	19	19	Wt. Tare (g)	20.68	20.44
Wt. Dry Soil (g)	9.2	9.7	8.2	Wt. Dry Soil (g)	7.1	7.5
Wt. Water (g)	8.9	9.6	8.2	Wt. Water (g)	2.0	2.1
Water Content (%)	95.9%	98.8%	100.6%	Water Content (%)	27.8%	28.2%

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

Sewer Relief (11-0107-18)

Project No: 123311974

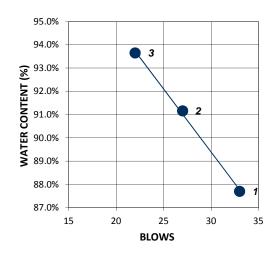
Date Received: May 9, 2017

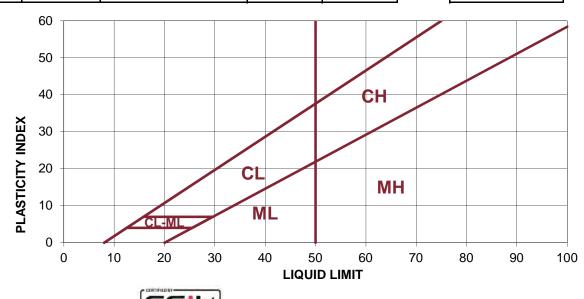
Date Tested: May 15, 2017

Tested By: Nestor Abarca, C. Tech.

LABORATORY

199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999


Sample:	TH17-06, S6
' <u>-</u>	HOHID HMIT

LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	-Trial	1	2
No. of Blows	33	27	22	Illai	I	2
Tare No.	173	227	250	Tare No.	261	308
Wt. Sa. (wet+tare)(g)	39	39	38	Wt. Sa. (wet+tare)(g)	29.62	30.38
Wt. Sa. (dry+tare)(g)	30	30	30	Wt. Sa. (dry+tare)(g)	27.80	28.42
Wt. Tare (g)	19	20	21	Wt. Tare (g)	20.24	20.35
Wt. Dry Soil (g)	10.6	9.8	9.1	Wt. Dry Soil (g)	7.6	8.1
Wt. Water (g)	9.3	9.0	8.6	Wt. Water (g)	1.8	2.0
Water Content (%)	87.7%	91.2%	93.6%	Water Content (%)	24.1%	24.3%

PL 24 PI 68 Natural MC (%) 51.0%

Reviewed By: Jason Thompson, C.E.T.

Wt. Dry Soil (g)

Wt. Water (g)

Water Content (%)

Atterberg Limits

10.0

9.2

91.2%

12.2

11.3

93.0%

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

Sewer Relief (11-0107-18)

Project No: 123311974

Date Received: May 9, 2017

Date Tested: May 11, 2017

Tested By: Larry Presado, C. Tech.

Wt. Dry Soil (g)

Wt. Water (g)

Water Content (%)

LABORATORY

199 Henlow Bay

Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999

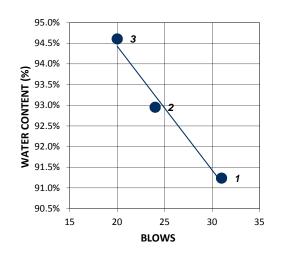
Sample:	TH17-06, S9						
	LIQUID LIMIT			 PLA	STIC LIMIT		
Trial	1	2	3	Trial	1	2	
No. of Blows	31	24	20	Illai	'	2	
Tare No.	320	297	293	Tare No.	228	276	
Wt. Sa. (wet+tare)(g)	40	44	43	Wt. Sa. (wet+tare)(g)	31.42	30.46	
Wt. Sa. (dry+tare)(g)	31	33	32	Wt. Sa. (dry+tare)(g)	29.08	28.35	
Wt. Tare (g)	21	21	21	Wt. Tare (g)	20.35	20.49	

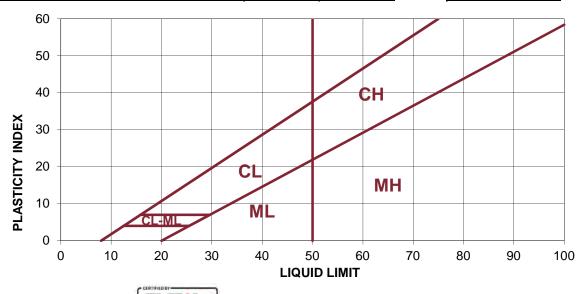
11.1

10.5

94.6%

RESULTS


LL 93


PL 27

PI 66

Natural MC (%)

48.4%

8.7

2.3

26.8%

7.9

2.1

26.8%

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

C5 - Cockburn and Calrossie Project Name:

Sewer Relief (11-0107-18)

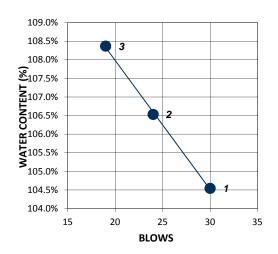
Project No: 123311974

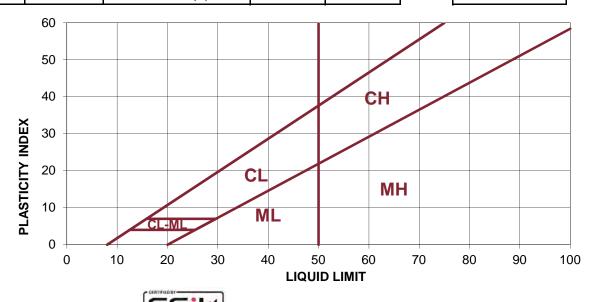
Date Received: May 9, 2017

May 11, 2017 Tested By: Larry Presado, C. Tech. **LABORATORY**

199 Henlow Bay

Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999


Sample :	TH17-10, S3
_	LIOUID LIMIT


LIQUID LIMIT				PLASTIC LIMIT		
Trial	1	2	3	Trial	1	2
No. of Blows	30	24	19	IIIdi	'	2
Tare No.	286	271	265	Tare No.	180	162
Wt. Sa. (wet+tare)(g)	39	40	42	Wt. Sa. (wet+tare)(g)	29.70	30.71
Wt. Sa. (dry+tare)(g)	30	30	31	Wt. Sa. (dry+tare)(g)	27.13	28.15
Wt. Tare (g)	21	21	20	Wt. Tare (g)	18.94	19.98
Wt. Dry Soil (g)	9.0	9.3	10.3	Wt. Dry Soil (g)	8.2	8.2
Wt. Water (g)	9.4	10.0	11.1	Wt. Water (g)	2.6	2.6
Water Content (%)	104.5%	106.5%	108.4%	Water Content (%)	31.4%	31.3%

Date Tested:

RESULIS					
LL	106				
PL	31				
PI	75				
Natural MC (%)					
54.2%					

RESULTS

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

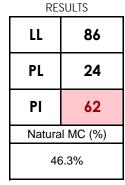
C5 - Cockburn and Calrossie Project Name:

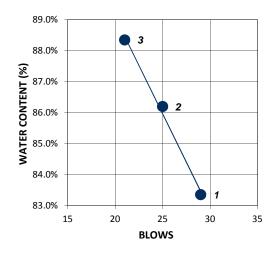
Sewer Relief (11-0107-18)

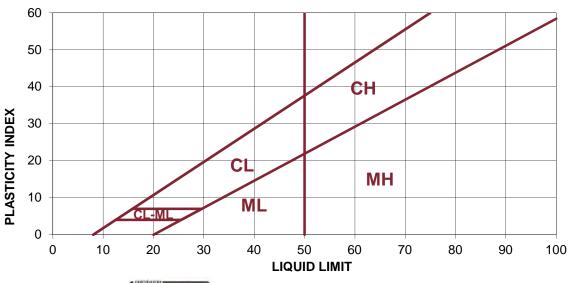
Project No: 123311974

Date Received: May 9, 2017

May 12, 2017 Date Tested:


Tested By: Nestor Abarca, C. Tech. **LABORATORY**


199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999

Sample :	IH17-1						
	LIQUID LIMIT			_	PLA:	STIC LIMIT	
Trial	1	2	3			1	
No. of Blows	29	25	21	IIIdi		'	2
Tare No	145	154	160	Tare No		178	23

Trial	1	2	3	-Trial	1	n
No. of Blows	29	25	21	IIIai	'	2
Tare No.	145	154	160	Tare No.	178	235
Wt. Sa. (wet+tare)(g)	35	38	39	Wt. Sa. (wet+tare)(g)	29.31	31.37
Wt. Sa. (dry+tare)(g)	27	29	30	Wt. Sa. (dry+tare)(g)	27.42	29.24
Wt. Tare (g)	18	19	19	Wt. Tare (g)	19.70	20.55
Wt. Dry Soil (g)	9.3	9.9	10.6	Wt. Dry Soil (g)	7.7	8.7
Wt. Water (g)	7.7	8.5	9.3	Wt. Water (g)	1.9	2.1
Water Content (%)	83.4%	86.2%	88.3%	Water Content (%)	24.5%	24.5%

Reviewed By: Jason Thompson, C.E.T.

Wt. Dry Soil (g)

Wt. Water (g)

Water Content (%)

Atterberg Limits

9.6

8.3

86.6%

9.1

8.0

88.1%

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

Sewer Relief (11-0107-18)

Project No: 123311974

Date Received: May 9, 2017

Date Tested: May 12, 2017

Tested By: Nestor Abarca, C. Tech.

Wt. Dry Soil (g)

Wt. Water (g)

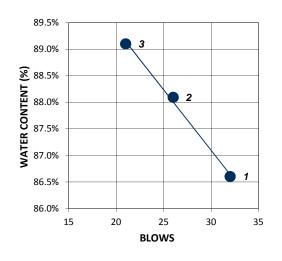
Water Content (%)

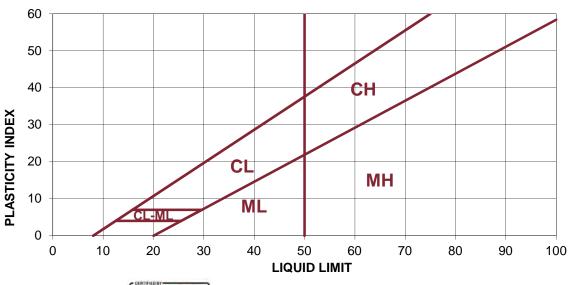
LABORATORY

199 Henlow Bay

Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999

Sample:	TH17-1	0, S11				
	LIQUID LIMIT			<u> </u>	STIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	32	26	21	Illai		2
Tare No.	170	202	212	Tare No.	217	317
Wt. Sa. (wet+tare)(g)	38	36	37	Wt. Sa. (wet+tare)(g)	29.35	30.15
Wt. Sa. (dry+tare)(g)	29	28	29	Wt. Sa. (dry+tare)(g)	27.32	28.28
Wt. Tare (g)	20	19	20	Wt. Tare (g)	18.72	20.45


9.1


8.1

89.1%

112002.0			
LL	88		
PL	24		
PI	64		
Natural MC (%)			
48.5%			

RESULTS

8.6

2.0

23.6%

7.8

1.9

23.9%

Continued town and being resident the foresteen.

For a specific treaty and being resemble (1) continued.

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

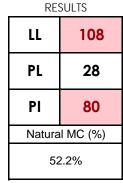
Sewer Relief (11-0107-18)

Project No: 123311974

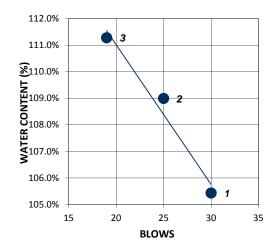
Date Received: May 9, 2017

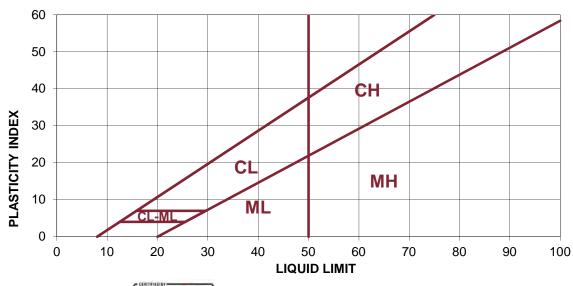
Date Tested: May 12, 2017

Tested By: Nestor Abarca, C. Tech.


LABORATORY

199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999


Sample :	TH17-15, S4
	LIQUID LIMIT

	LIQUID LIMIT			PLA	STIC LIMIT	
Trial	1	2	3	-Trial	1	2
No. of Blows	30	25	19	Illal	1	2
Tare No.	151	233	270	Tare No.	285	311
Wt. Sa. (wet+tare)(g)	37	37	37	Wt. Sa. (wet+tare)(g)	31.84	28.16
Wt. Sa. (dry+tare)(g)	28	28	28	Wt. Sa. (dry+tare)(g)	29.49	26.53
Wt. Tare (g)	20	20	21	Wt. Tare (g)	21.17	20.82
Wt. Dry Soil (g)	8.3	8.1	7.5	Wt. Dry Soil (g)	8.3	5.7
Wt. Water (g)	8.7	8.9	8.4	Wt. Water (g)	2.4	1.6
Water Content (%)	105.4%	109.0%	111.3%	Water Content (%)	28.2%	28.5%

Reviewed By: Jason Thompson, C.E.T.

ASTM D4318 Method A- Multi-Point Client: KGS Group Inc.

Project Name: C5 - Cockburn and Calrossie

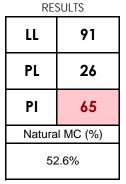
Sewer Relief (11-0107-18)

Project No: 123311974

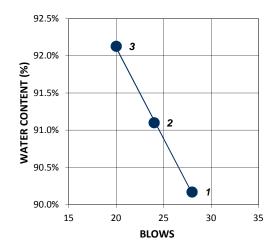
Date Received: May 9, 2017

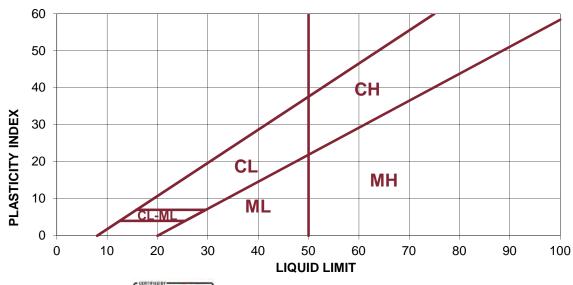
Date Tested: May 12, 2017

Tested By: Nestor Abarca, C. Tech.


LABORATORY

199 Henlow Bay


Winnipeg, Manitoba Canada R3Y 1G4 Tel: (204) 488-6999


Sample :	TH17-15, S6
	LIQUID LIMIT

	LIQUID LIMIT			_ PLA	STIC LIMIT	
Trial	1	2	3	Trial	1	2
No. of Blows	28	24	20	Illai	ı	2
Tare No.	173	227	250	Tare No.	261	308
Wt. Sa. (wet+tare)(g)	36	38	40	Wt. Sa. (wet+tare)(g)	29.68	31.74
Wt. Sa. (dry+tare)(g)	28	30	31	Wt. Sa. (dry+tare)(g)	27.72	29.37
Wt. Tare (g)	19	20	21	Wt. Tare (g)	20.25	20.36
Wt. Dry Soil (g)	8.9	9.1	10.2	Wt. Dry Soil (g)	7.5	9.0
Wt. Water (g)	8.0	8.3	9.4	Wt. Water (g)	2.0	2.4
Water Content (%)	90.2%	91.1%	92.1%	Water Content (%)	26.2%	26.3%

Reviewed By: Jason Thompson, C.E.T.

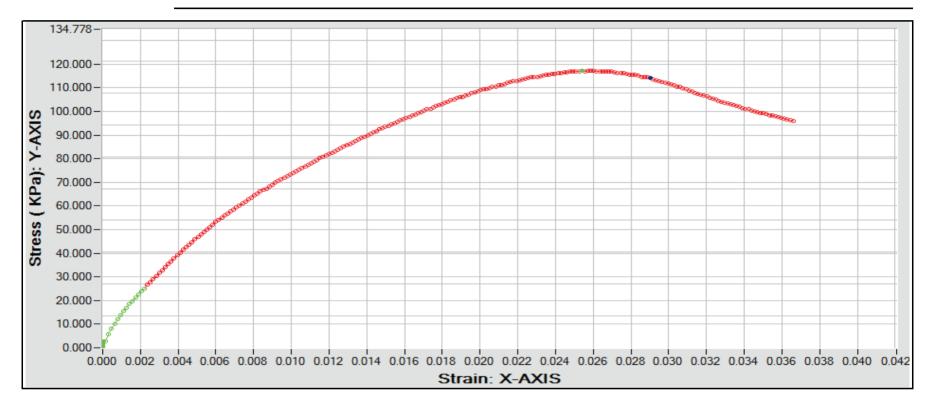
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St.

Sewer Relief (11-0107-18)


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017 SAMPLE ID: TH17-01, S4 TESTED BY: Larry Presado

Soil Description: clay, brown, firm, moist, high plasticity

Failure Description: diagonal shear failure

Diameter, mm:	73.24
Height, mm:	161.06
Height/Diameter Ratio:	2.20
Sample Weight, g:	1137.44
Moisture Content. %:	55.4
Wet Unit Weight, kN/m³:	16.43
Dry Unit Weight, kN/m³:	10.57
Void ratio:	1.55
Saturation, %:	98.36
Unconfined Compressive Strength, kPa:	117
Strain at Failure, %:	2.54

REPORT DATE: May 16, 2017 REVIEWED BY: Jason Thompson, C.E.T.

City, Prov

LABORATORY

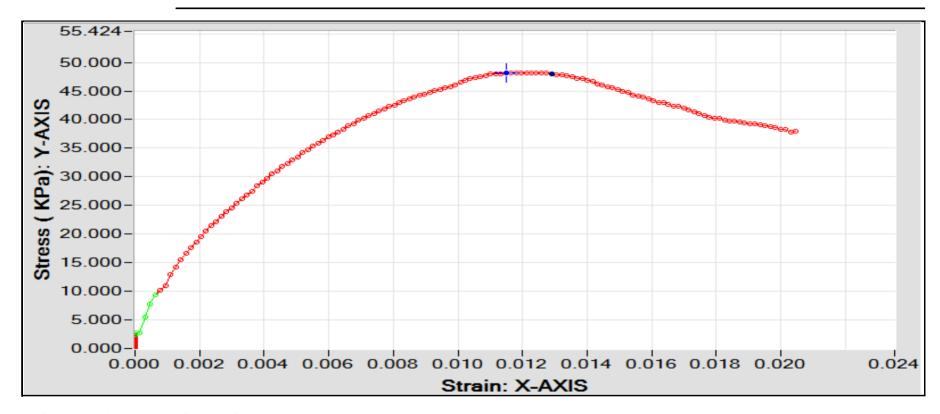
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Sewer Relief (11-0107-18)

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St.


Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-01, S8 TESTED BY: Larry Presado

Soil Description: clay, grey, firm, moist, high plasticity, silty

Failure Description: diagonal shear

Diameter, mm:	72.72
Height, mm:	161.42
Height/Diameter Ratio:	2.22
Sample Weight, g:	1139.30
Moisture Content. %:	52.9
Wet Unit Weight, kN/m³:	16.65
Dry Unit Weight, kN/m³:	10.89
Void ratio:	1.47
Saturation, %:	98.70
Unconfined Compressive Strength, kPa:	48
Strain at Failure, %:	1.15

REPORT DATE: May 16, 2017

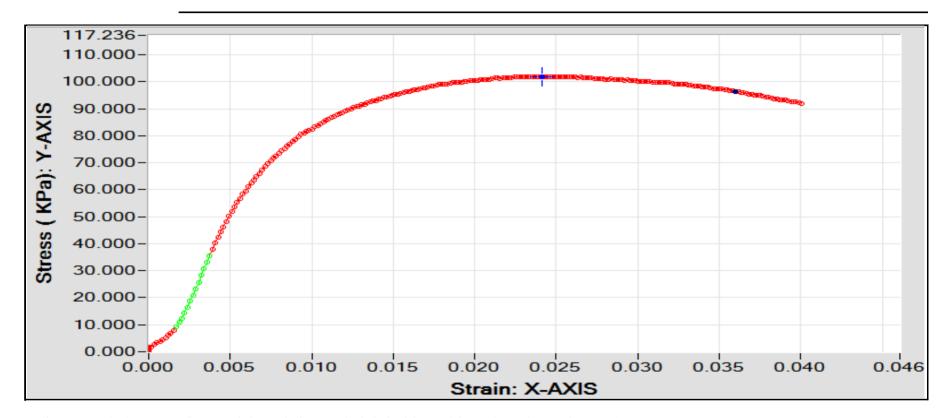
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St.

Sewer Relief (11-0107-18)


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-06, S4 TESTED BY: Larry Presado

Soil Description: clay, brown, stiff, moist, high plasticity, trace silt

Failure Description: diagonal shear failure & slightly buldge mid-section of sample specimen

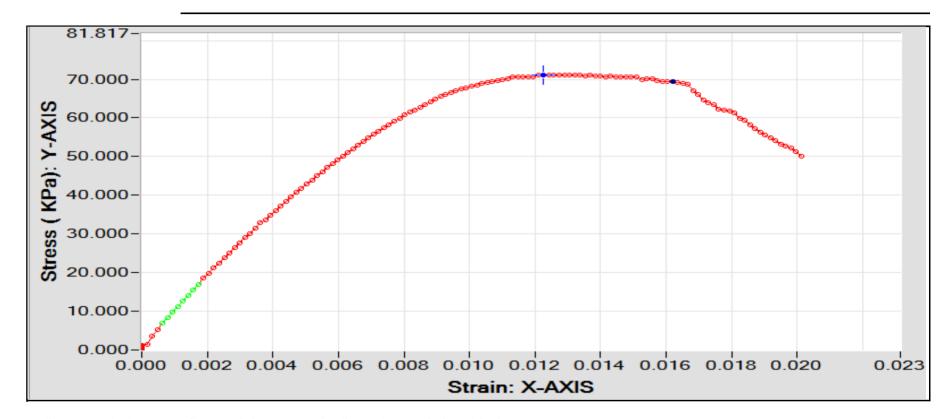
Diameter, mm:	72.15
Height, mm:	149.58
Height/Diameter Ratio:	2.07
Sample Weight, g:	1038.31
Moisture Content. %:	53.3
Wet Unit Weight, kN/m³:	16.64
Dry Unit Weight, kN/m³:	10.85
Void ratio:	1.48
Saturation, %:	98.80
Unconfined Compressive Strength, kPa:	102
Strain at Failure, %:	2.41

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St. Sewer Relief (11-0107-18)


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-06, S6 TESTED BY: Larry Presado

Soil Description: clay, grey, stiff, moist, high - med. plasticity, trace silt

Failure Description: diagonal shear top of soil specimen "slickensided"

Diameter, mm:	72.32
Height, mm:	161.58
Height/Diameter Ratio:	2.23
Sample Weight, g:	1155.48
Moisture Content. %:	50.0
Wet Unit Weight, kN/m³:	17.06
Dry Unit Weight, kN/m³:	11.37
Void ratio:	1.37
Saturation, %:	100.43
Unconfined Compressive Strength, kPa:	71
Strain at Failure, %:	1.23

REPORT DATE: May 16, 2017

City, Prov

LABORATORY

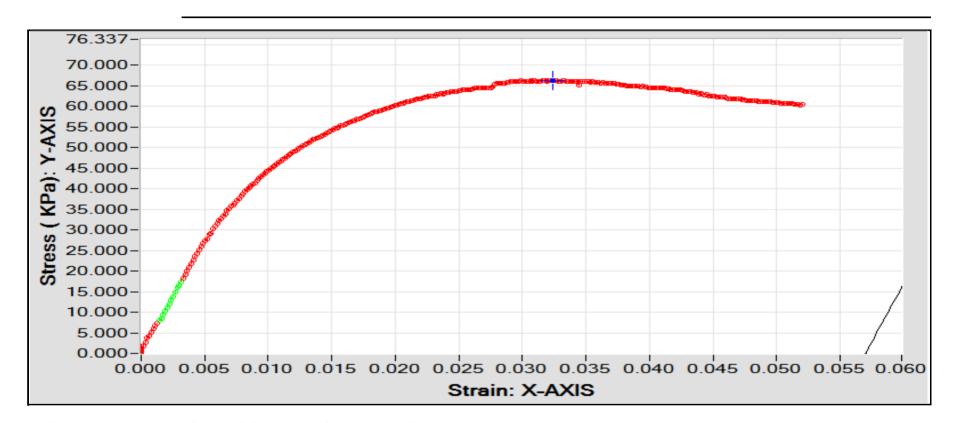
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Sewer Relief (11-0107-18)

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St.


Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-10, S6 TESTED BY: Larry Presado

Soil Description: clay, grey, stiff, moist, high plasticity, trace silt

Failure Description: diagonal shear top & bottom of soil specimen

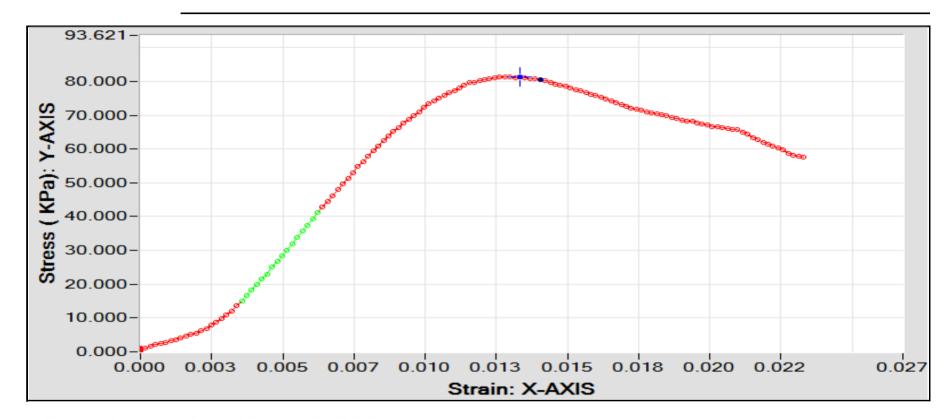
Diameter, mm:	72.32
Height, mm:	161.56
Height/Diameter Ratio:	2.23
Sample Weight, g:	1141.75
Moisture Content. %:	47.8
Wet Unit Weight, kN/m³:	16.86
Dry Unit Weight, kN/m³:	11.41
Void ratio:	1.36
Saturation, %:	96.46
Unconfined Compressive Strength, kPa:	66
Strain at Failure, %:	3.24

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St. Sewer Relief (11-0107-18)


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-12, S4 TESTED BY: Larry Presado

Soil Description: clay, grey, firm, moist, high plasticity, trace silt

Failure Description: diagonal shear, "slickenslided"

Diameter, mm:	72.77
Height, mm:	142.89
Height/Diameter Ratio:	1.96
Sample Weight, g:	964.30
Moisture Content. %:	54.0
Wet Unit Weight, kN/m³:	15.90
Dry Unit Weight, kN/m³:	10.33
Void ratio:	1.61
Saturation, %:	92.21
Unconfined Compressive Strength, kPa:	81
Strain at Failure, %:	1.33

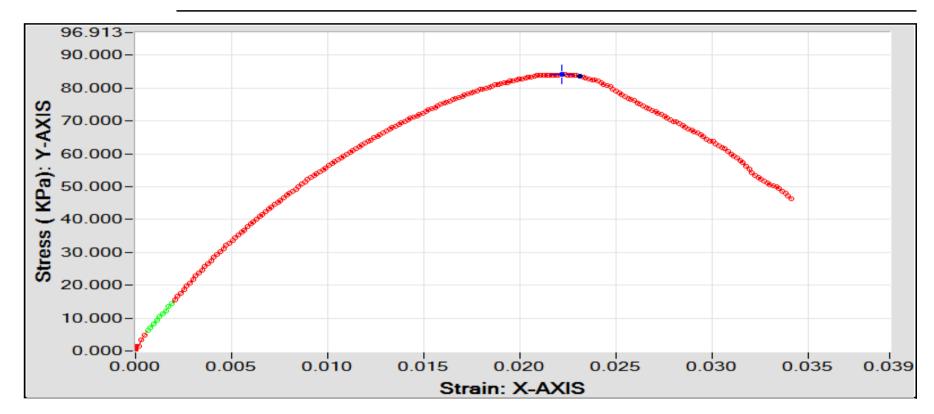
REPORT DATE: May 16, 2017

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St. Sewer Relief (11-0107-18)


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-12, S8 TESTED BY: Larry Presado

Soil Description: clay, grey, firm, moist, high plasticity, trace silt

Failure Description: diagonal shear failure on sample specimen, "slicken-slided"

Diameter, mm:	72.17
Height, mm:	161.46
Height/Diameter Ratio:	2.24
Sample Weight, g:	1145.19
Moisture Content. %:	50.9
Wet Unit Weight, kN/m³:	16.99
Dry Unit Weight, kN/m³:	11.26
Void ratio:	1.39
Saturation, %:	100.45
Unconfined Compressive Strength, kPa:	84
Strain at Failure, %:	2.22

Address

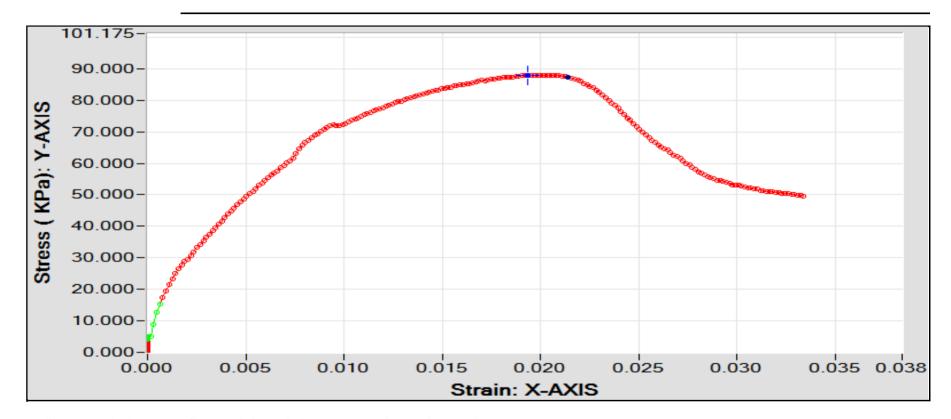
LABORATORY

199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

3rd Floor - 865 Waverley St. Sewer Relief (11-0107-18)


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017
SAMPLE ID: TH17-15, S4 TESTED BY: Larry Presado

Soil Description: clay, grey, stiff, moist, high plasticity, trace silt

Failure Description: diagonal shear failure on top of sample specimen

72.30
161.27
2.23
1148.86
51.8
17.00
11.20
1.41
101.35
88
1.94

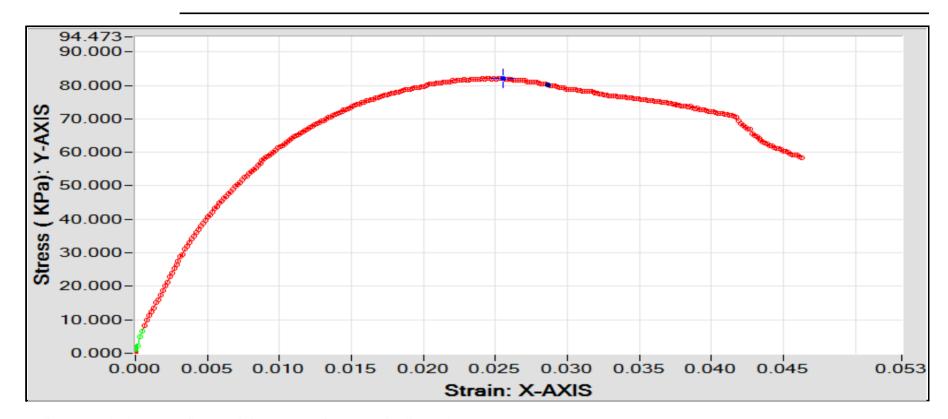
199 Henlow Bay Winnipeg MB R3Y 1G4 Tel: (204) 488-6999

UNCONFINED COMPRESSIVE STRENGTH OF COHESIVE SOIL ASTM D2166

Sewer Relief (11-0107-18)

Client KGS Group Inc. PROJECT: C5 - Cockburn & Calrossie

Address 3rd Floor - 865 Waverley St.


City, Prov Winnipeg, Manitoba

Postal Code R3T 5P4 PROJECT NO.: 123311974

Attention: Jacqueline MacLennan REPORT NO.:

SAMPLED BY: Client DATE RECEIVED: May 9, 2017 SAMPLE ID: TH17-15, S6 TESTED BY: Larry Presado

Soil Description: clay, grey, firm, moist, high plasticity, trace silt

Failure Description: diagonal shear top & bottom of soil specimen

Diameter, mm:	72.29
Height, mm:	161.38
Height/Diameter Ratio:	2.23
Sample Weight, g:	1169.72
Moisture Content. %:	50.4
Wet Unit Weight, kN/m³:	17.31
Dry Unit Weight, kN/m³:	11.50
Void ratio:	1.34
Saturation, %:	103.31
Unconfined Compressive Strength, kPa:	82
Strain at Failure, %:	2.55

REPORT DATE: May 16, 2017

CONFIDENTIAL REPORT

XRD Analysis

Prepared for KGS Group

By Steven Creighton, PhD and Lucy Hunt, PhD Saskatchewan Research Council Mining and Minerals

SRC Publication No. 10400-17C17

June 2017

CONFIDENTIAL REPORT

XRD Analysis

Prepared for KGS Group

By Steven Creighton, PhD and Lucy Hunt, PhD Saskatchewan Research Council Mining and Minerals

SRC Publication No. 10400-17C17

June 2017

Advanced Microanalysis Centre[™] Saskatchewan Research Council 125 – 15 Innovation Blvd. Saskatoon, SK S7N 2X8 Tel: 306-385-4066

June 2017 XRD: AMC2017-053

Sample preparation

A portion of each sample was dried crushed in a manual steel crusher and then ground in an agate ball mill. A random aliquot of 0.5g of sample was loaded into a stainless steel holder and secured in place with a plastic backing. The sample was stored in a sealed ethylene glycol chamber at 50°C overnight. The final sample thickness is 1mm – sufficient to be considered infinitely thick for X-ray diffraction using a Cu source.

XRD Analysis and data processing

Samples were irradiated with Cu K α radiation (λ =1.54056 Å) in a Bruker D4 Endeavor X-ray diffractometer (XRD) operating at 1.6 kW power (40 kV accelerating potential and 40 mA current). The XRD is outfitted with a high speed LynxEye silicon strip detector with fluorescence background suppression. Samples were measured from 3.5 to 70° 20 with a 0.02° step size and 0.35 seconds dwell time with a 0.300° divergence slit.

The raw diffraction data was processed using MDI Products Jade software for mineral identification and quantification. Minerals were identified based on the observed interatomic spacing of the crystal lattices present constrained by common mineral associations. All mineral abundances were calculated using whole-pattern fitting algorithms with peak intensities scaled with internally-consistent relative intensity ratios. Non-orientable mineral abundances were quantified using patterns derived from the American Mineralogist Crystal Structure Database (AMCSD). Clay mineral abundances were quantified using reference spectra proprietary to SRC because the preferred orientation and glycol solvation precludes the use of published (e.g. ICDD, AMCSD) mineral reference databases.

Detection and precision limits

The detection limit of XRD analysis is controlled by the abundance and symmetry of all the minerals present in the sample. Low symmetry minerals are harder to detect in the presence of higher symmetry minerals. The estimated detection limit for most minerals is 1-3 wt.%.

Based on repeat analyses of secondary standards, the estimated accuracy of the clay analysis is ± 3 wt.%.

Results

The following pages contain the results of the XRD mineral identification and quantitative mineral abundances. A summary spreadsheet of the mineralogy is also included.

Client: KGS Group

Contact: Jacqueline MacLennan

SRC Advanced Microanalysis CentreTM

Group No.: AMC2017-053

Date of Report: Jun. 15, 2017

125 - 15 Innovation Blvd, Saskatoon, SK, S7N 2X8

Samples: 4

Tel: 306.385.4066 Email: microlab@src.sk.ca

XRD Analysis

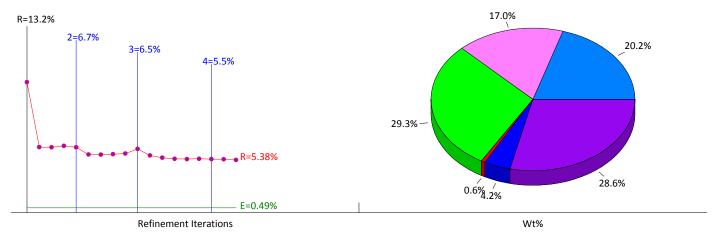
Semi-oriented EG Treated Mount

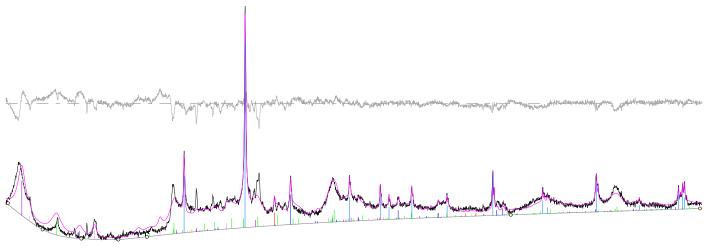
	Quartz wt%	Clinochlore wt%	Muscovite wt%	Calcite wt%	Dolomite wt%	Smectite wt%	Total
Sample							
TH17-09-S4-12'	18.3	15.7	20.3	3.7	6.0	35.9	99.9
TH17-04-S4-17'	16.1	15.0	22.2	4.5	9.7	32.5	100.0
TH17-04-S3-12'	20.2	17.0	29.3	0.6	4.2	28.6	99.9
TH17-09-S5-17'	20.2	13.3	15.4	4.4	9.5	37.1	99.9

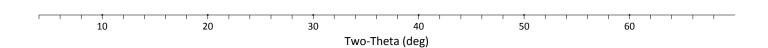
-TH17-04-S3-12'

FILE: [TH17-09-S3-12'.raw] TH17-09-S3-12' SCAN: 4.0/69.9946/0.01997/49.7(sec), Cu(40kV,40mA), I(p)=17555, 06/09/17 08:27a PROC: [WPF Control File] ✓ K-alpha2 Peak Present [Diffractometer LP] Two-Theta Range of Fit = 4.0 - 70.0(deg) ✓ LS Weighting in 1 / Sqr(I) \checkmark Specimen Displacement - Cos(Theta) = 0.027144(0.001919) ✓ LS Weighting in Sin(Theta) ☐ Monochromator Correction for LP Factor = 1.0 ✓ Apply Anomalous Scattering ☐ K-alpha2/K-alpha1 Intensity Ratio = 0.5 Profile Shape Function (PSF) for All Phases: Pearson-VII, Fixed-BG, Lambda=1.54059Å (Cu/K-alpha1) I/Ic Wt% #L Phase ID (6) Source Quartz - SiO₂ PDF#98-091-4776 4.52(5%) 20.2 (1.2) 18 Clinochlore - Mg_{4.95}Al_{1.7}Fe_{.33}Si_{3.02}O₁₈H₈ PDF#98-090-4182 0.63(5%) 17.0 (1.5) 267 Muscovite - (K_{.92}Na_{.08})Si_{3.16}Al_{2.68}Ti_{.04}Fe_{.12}Mg_{.14}H_{.26}O_{11.96}F_{.04} 29.3 (1.8) PDF#98-091-2033 1.50(5%) 200 ■ Calcite - CaCO₃ PDF#98-090-3365 3.28(5%) 0.6 (0.1) 19 Dolomite - CaMgC₂O₆ PDF#98-090-5855 2.70(5%) 4.2 (0.4) 26

PDF#99-003-0009


3.60(5%)


28.6 (2.0)

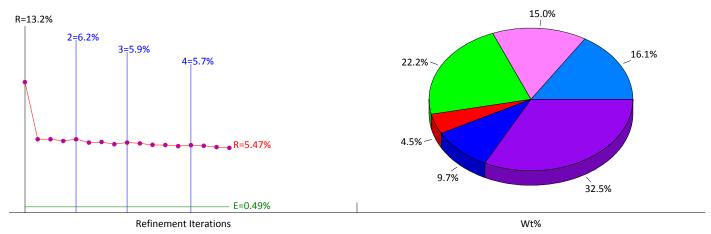

24

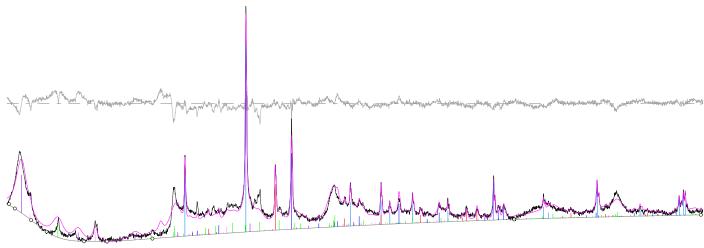
NOTE: Fitting Halted at Iteration 18(4): R=5.38% (E=0.49%, R/E=10.95, P=40, EPS=0.5)

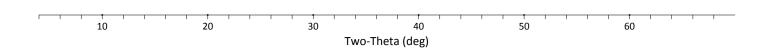
Smectite - (Na_{0.2}Ca_{0.1})(Al_{1.3}Mg_{0.2}Fe_{0.3})Si₄O₁₀(OH)

FILE: [TH17-04-S4-17'.raw] TH17-04-S4-17' SCAN: 4.0/69.9946/0.01997/49.7(sec), Cu(40kV,40mA), I(p)=19203, 06/09/17 09:09a PROC: [WPF Control File] ✓ K-alpha2 Peak Present [Diffractometer LP] Two-Theta Range of Fit = 4.0 - 70.0(deg) ✓ LS Weighting in 1 / Sqr(I) \checkmark Specimen Displacement - Cos(Theta) = 0.019731(0.002044) ✓ LS Weighting in Sin(Theta) ☐ Monochromator Correction for LP Factor = 1.0 ✓ Apply Anomalous Scattering ☐ K-alpha2/K-alpha1 Intensity Ratio = 0.5 Profile Shape Function (PSF) for All Phases: Pearson-VII, Fixed-BG, Lambda=1.54059Å (Cu/K-alpha1) I/Ic Wt% #L Phase ID (6) Source Quartz - SiO₂ PDF#98-091-4776 4.52(5%) 16.1 (0.9) 18 Clinochlore - Mg_{4.95}Al_{1.7}Fe_{.33}Si_{3.02}O₁₈H₈ PDF#98-090-4182 0.63(5%) 15.0 (1.2) 258 Muscovite - (K_{.92}Na_{.08})Si_{3.16}Al_{2.68}Ti_{.04}Fe_{.12}Mg_{.14}H_{.26}O_{11.96}F_{.04} PDF#98-091-2033 22.2 (1.3) 1.50(5%) 199 ■ Calcite - CaCO₃ PDF#98-090-3365 3.28(5%) 4.5 (0.3) 19 Dolomite - CaMgC₂O₆ PDF#98-090-5855 2.70(5%) 9.7 (0.6) 26

PDF#99-003-0009


3.60(5%)


32.5 (2.1)

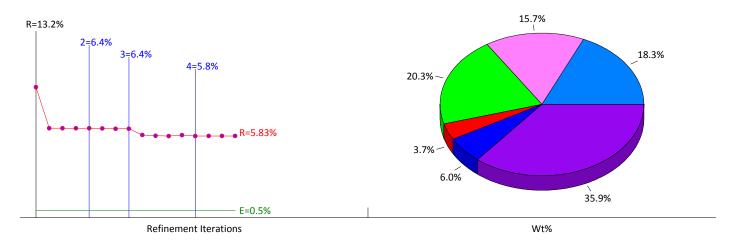

25

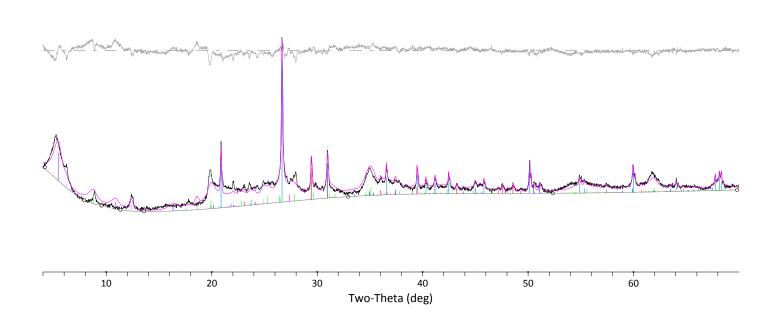
NOTE: Fitting Halted at Iteration 17(4): R=5.47% (E=0.49%, R/E=11.06, P=41, EPS=0.5)

Smectite - (Na_{0.2}Ca_{0.1})(Al_{1.3}Mg_{0.2}Fe_{0.3})Si₄O₁₀(OH)

-TH17-09-S4-12'

FILE: [TH17-09-S4-12'.raw] TH17-09-S4-12' SCAN: 4.0/69.9946/0.01997/49.7(sec), Cu(40kV,40mA), I(p)=18446, 06/09/17 08:48a PROC: [WPF Control File]

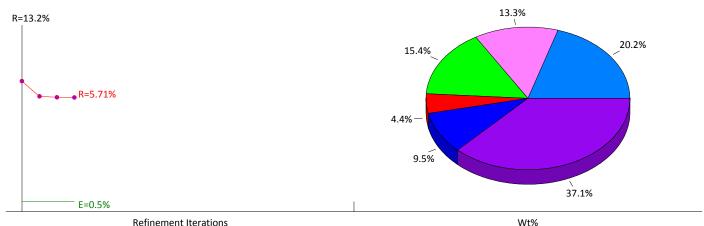

✓ K-alpha2 Peak Present [Diffractometer LP] Two-Theta Range of Fit = 4.0 - 70.0(deg) ✓ LS Weighting in 1 / Sqr(I) \checkmark Specimen Displacement - Cos(Theta) = 0.023215(0.001997)

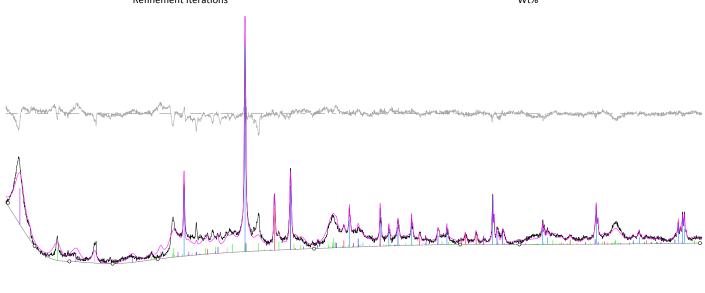

✓ LS Weighting in Sin(Theta) ☐ Monochromator Correction for LP Factor = 1.0 ✓ Apply Anomalous Scattering ☐ K-alpha2/K-alpha1 Intensity Ratio = 0.5

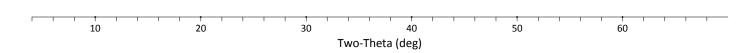
Profile Shape Function (PSF) for All Phases: Pearson-VII, Fixed-BG, Lambda=1.54059Å (Cu/K-alpha1)

Phase ID (6)	Source	I/Ic	Wt%	#L
Quartz - SiO ₂	PDF#98-091-4776	4.52(5%)	18.3 (1.1)	18
Clinochlore - Mg _{4.95} Al _{1.7} Fe _{.33} Si _{3.02} O ₁₈ H ₈	PDF#98-090-4182	0.63(5%)	15.7 (1.3)	267
Muscovite - (K _{.92} Na _{.08})Si _{3.16} Al _{2.68} Ti _{.04} Fe _{.12} Mg _{.14} H _{.26} O _{11.96} F _{.04}	PDF#98-091-2033	1.50(5%)	20.3 (1.3)	201
■ Calcite - CaCO ₃	PDF#98-090-3365	3.28(5%)	3.7 (0.3)	19
Dolomite - CaMgC₂O ₆	PDF#98-090-5855	2.70(5%)	6.0 (0.4)	26
Smectite - (Na _{0.2} Ca _{0.1})(Al _{1.3} Mg _{0.2} Fe _{0.3})Si ₄ O ₁₀ (OH)	PDF#99-003-0009	3.60(5%)	35.9 (2.4)	25

NOTE: Fitting Halted at Iteration 16(4): R=5.83% (E=0.5%, R/E=11.76, P=40, EPS=0.5)




-TH17-09-S5-17'


FILE: [TH17-09-S5-17'.raw] TH17-09-S5-17' SCAN: 4.0/69.9946/0.01997/49.7(sec), Cu(40kV,40mA), I(p)=24844, 06/13/17 10:55a PROC: [WPF Control File] ✓ K-alpha2 Peak Present [Diffractometer LP] Two-Theta Range of Fit = 4.0 - 70.0(deg) ✓ LS Weighting in 1 / Sqr(I) \checkmark Specimen Displacement - Cos(Theta) = 0.027564(0.001607) ✓ LS Weighting in Sin(Theta) ☐ Monochromator Correction for LP Factor = 1.0 ✓ Apply Anomalous Scattering ☐ K-alpha2/K-alpha1 Intensity Ratio = 0.5 Profile Shape Function (PSF) for All Phases: Pearson-VII, Fixed-BG, Lambda=1.54059Å (Cu/K-alpha1) I/Ic Wt% #L Phase ID (6) Source Quartz - SiO₂ PDF#98-091-4776 4.52(5%) 20.2 (1.2) 18 Clinochlore - Mg_{4.95}Al_{1.7}Fe_{.33}Si_{3.02}O₁₈H₈ PDF#98-090-4182 0.63(5%) 13.3 (1.1) 258 Muscovite - (K_{.92}Na_{.08})Si_{3.16}Al_{2.68}Ti_{.04}Fe_{.12}Mg_{.14}H_{.26}O_{11.96}F_{.04} PDF#98-091-2033 15.4 (0.9) 1.50(5%) 198 ■ Calcite - CaCO₃ PDF#98-090-3365 3.28(5%) 4.4 (0.3) 19 Dolomite - CaMgC₂O₆ PDF#98-090-5855 2.70(5%) 9.5 (0.6) 27 Smectite - (Na_{0.2}Ca_{0.1})(Al_{1.3}Mg_{0.2}Fe_{0.3})Si₄O₁₀(OH) PDF#99-003-0009 3.60(5%) 37.1 (2.3)

25

NOTE: Fitting Halted at Iteration 4(4): R=5.71% (E=0.5%, R/E=11.34, P=41, EPS=0.5)

